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Abstract

The complex response of a granular material to loading and unloading results
directly from its particulate nature. The independent particle motions affect
load transferal among neighboring grains and alters the microstructure of the
material. Constituent particles typically transfer load through shear and normal
forces at contacts with neighboring particles, causing the overall stress to be
unevenly distributed in the material. This research focuses on the development of
a mathematical model to derive the response of a macroscopic point in a granular

material from the overall response of collection of particles.

The mathematical formulation describes a methodology for deriving the
macroscopic constitutive law for a granular material directly from the discrete
particle-to-particle interactions. The important feature of the model lies in the
implicit generation of the micromechanical response of a particle assembly quasi-
statically and not dynamically. The quasi-static approach to generating the
micromechanical response is more appropriate for a broader class of engineering

applications where inertia effects are negligible such as in creep deformation.
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) Chapter 1

d Introduction

[ J

° 1.1. Problem Statement

Many problems of special interest to engineers and earth scientists involve
characterization of the engineering behavior of granular materials such as soils.
Granular materials respond quite differently from polycrystalline materials such as
¢ metals due to their particulate nature and more random microstructure. Since the
particle-to-particle interaction is frictional in nature, contacts in granular media can
easily form or break as the particles move toward their new equilibrium positions.
From a modeling standpoint, the prediction of the new microstructure of the
® material represents a major source of numerical difficulty. Consequently, the effects
of microstructure on the macromechanical response of granular media remain poorly
understood.

° The distinguishing features of a granular material’s response to loading and
unloading directly result from the material’s particulate nature. Constituent
particles typically interact with distinct neighboring granules at points of contact,
and during loading/unloading, unbalanced shear and normal contact forces impel

° particles toward their new equilibrium positions. As a result, the overall stress

field becomes unevenly distributed throughout the material. Many experimental,

analytical and numerical models have been developed to study such particle behavior

and its effects on the overall response of a granular material.

® 1




Several common experimental methods include microscopic evaluation of soil
samples and the loading/unloading of metal, photoelastic disk assemblies. Oda [1-3]
used a hardening resin to fix a sand sample’s microstructure during deformation.
They reported spatial distributions of the average number of contacts per particle,
orientation of the long axes of the grains, and the orientation of the contact
planes between particles. Drescher and De Josselin de Jong [4] and Oda et al. [5-
6] photographed assemblies of photoelastic rods at various stages of loading to
determine contact forces, displacements, and rotations of individual disks. However,
such analyses are time consuming and lack flexibility to run multiple tests on

precisely identical specimens for studying the effect of any parameters.

Analytical models provide expressions to predict the nonlinear behavior of
uniformly packed and sized spheres. Deresiewiez [7] proposed a model for cubic
arrays of uniform spheres that accommodated for the ultimate failure of the
assembly and predicted a hysteretic stress-strain behavior. Thorton [8] developed a
general solution for the strength of face-centered cubic array of uniform spheres and
identified a variety of failure envelopes. This regular packing of uniform spheres and
a few simple loading/unloading paths restrict the analytic approach to calculating

stresses and displacements in a granular media.

In contrast to experimental and analytical models, numerical models allow the
observation of minute changes in an idealized material’s structure for any loading and
unloading path. Numerical simulation provides access to detailed micromechanical
statistics, particle motions, and interparticle forces. It also allows flexibility to alter

loading paths, particle size distributions, and the physical properties of the particles.
Serrano and Rodriguez-Ortiz [9], Rodriguez-Ortiz [10], and Kishino [19]

developed a numerical model for assemblies of circular disks by solving for an
assembly of particle’s deformation based on governing equations for each particle as
it interacts with its surrounding particles. These models allow the specification of
either a quasi-static stress or strain history for the assembly boundary. Serrano and
Rodriguez-Ortiz calculate particle equilibrium forces and displacements by assuming
that the incremental displacements of each particle center determines increments of

contact force. They continually solve the linear system of equations relating the




particle contact forces to the particle displacements and rotations. The contact
theories of Mindlin [11] and Mindlin and Deresiewiez [12] form the basis of the
matrix of contact compliances which must be updated for each iteration according
to the loading path followed for each contact. Kishino’s model, on the other hand,
iteratively displaces and rotates each particle according to the contact stiffness
matrix defined by the locations of neighboring particles. The contact stiffness matrix
consists of simply rotating a constant diagonal matrix of normal and tangential
contact compliances by a transformation matrix. The orientation of the vector
connecting the centroids of contacting particles defines this matrix for each iteration.
The model applies a strain history via the movement of four straight walls by
prescribed incremental displacements and applies a stress history by moving the
walls to attain the prescribed external stress according to the contact stiffnesses of

the boundary.

Cundall and Strack [13] proposed a computationally less intensive algorithm
for assemblies of particles called the distinct element method (DEM). The method
considers the interaction of particles as a transient problem where states of
equilibrium develop whenever internal forces balance. The crucial feature of the
DEM lies in the choice of a small enough time step over which particle velocities and
accelerations may be assumed constant and particle disturbances do not propagate
further than a disk’s contiguous neighbors. Many improvements on the original
DEM algorithm have since been made [14-19]. The DEM, however, contains several
shortcomings. The DEM simply employs a particle’s acceleration to predict its
direction of movement when in fact neighboring particles constrain this movement to
be not co-axial with the particle’s acceleration vector. Also, since the fundamental
idea of the model rests on explicit integration of Newton’s second law for each
particle, the model treats all problems, even quasi-static ones, dynamically. Even
with an extremely slow rate of loading, the DEM uses inertial effects to predict the
future position of each particle. The particle displacements are calculated based
on the “bounces” that particles make against contacting particles, and not on the
rotational and “scraping” effects which dominate a granular material’s response to

shearing deformations. For a problem with a very slow loading rate or even a static




problem, it becomes important to regulate the time effect in order for the inertial
effects to be negligible. Furthermore, the explicit nature of the numerical integration
algorithm makes the DEM conditionally stable and restricts the step size by the
natural period of the smallest particle. Thus, for even the simplest quasi-static
stress histories, inertial effects and numerical stability require many computational

cycles (see, e.g., [20-22]).

In a different approach to numerical modeling of granular materials,
micromechanical models describe the deformation behavior of an assembly of
particles using the continuum concepts of stress and strain. This type of
model derives the constitutive relationship for a granular assembly based on the
microstructure and interaction between particles. Nemat-Nassar and Mehrabadi [23]
describe the overall mechanical response of the granular mass with a simple
micromechanical model that treats the translation and rotation of discrete particles
as continuous fields. They transform a discrete system into an equivalent continuum
where continuum concepts of stress and strain describe the material’s overall
behavior. The model decomposes the local (micro) deformation rate and spin
into a ‘plastic’ or ‘inelastic’ part which leaves the soil fabric unchanged, and an
accommodating part which changes the soil fabric and results in a change in the
overall stress. At the macroscopic level, the notion of self-consistency as described
by Hill [24,25] relates the overall nominal stress rate to the overall velocity gradient

in terms of local variables.

Similarly, Chang et al. [26-28] adopt a self-consistent method to account for
the effect of particle separation, particle sliding associated with large deformations,
and a nonuniform strain field. Their model proposes a decomposition of the general
nonlinear particle displacement field into a linear displacement field and a field
describing the particle’s movement to achieve equilibrium after the imposition of the
linear field. In addition, the magnitude of the local (micro) strain depends largely
on the local stiffness rather than on the location of a particle and its contacting
neighbors. In effect, the macro-behavior of the granular assembly can be traced back
to the micromechanical behavior of a contact. This model, however, only subjects

the boundaries of the representative unit consisting of many randomly arranged




particles to displacements compatible with a uniform strain and does not apply a
stress field.

The modeling approach pursued in this study differs somewhat from those
proposed in previous studies in that the nonuniform and locally discontinuous
particle motions directly derive the macroscopic constitutive equations. In effect, the
model treats the assembly of particles as a separate structure whose overall response
reflects the character of a macroscopic point experiencing uniform deformation. Note
that the macro-element is interpreted herein as a homogeneously deforming element
and not as a soil sample experiencing non-uniform deformation. Viewing the macro-
element in this fashion renders the resulting model perfectly amenable to finite
element implementation since the overall response of the particle assembly may now
be interpreted as the sampled macroscopic response at the Gauss integration points.
It also allows the representation of the nonlinear elasto-plastic behavior of granular

materials using laws derived from particle-to-particle contacts.

The central features of the model can be described as follows. The model’s
foundation rests on the conventional hypothesis in computational plasticity by
assuming a deformation-driven problem, i.e., a given overall displacement gradient
determines the overall stress response. The assembly of particles representing the
macroscopic point experiences a prescribed overall uniform motion, after which
the particles are allowed to move in the microscopic sense. During the particle
motion, contacts are allowed to form or break, thus altering the microstructure of
the material. The overall stresses are then evaluated from the contact forces that
develop between the particles using the relationships derived from a virtual work

formulation presented in [23,24,29].

When the particle assembly experiences a macroscopic stress history, the
model iteratively seeks the assembly’s overall uniform motion which creates contact
forces exactly balancing the applied stress. The basis of the model lies on the
analytical description of the change in each particle’s displacement (a microscopic
quantity) with respect to the overall motion of the particle assembly (a macroscopic
quantity). In the terminology of self-consistent models, this matrix describes

the so-called ‘concentration tensor.’” To formalize this complex microscopic-




macroscopic relationship, a decomposition similar to Chang [26-28] is employed
for the constituent particle motions. Each particle’s movement consists of a uniform
displacement resulting from the overall strain field and a nonuniform, locally
discontinuous motion necessary to balance the contact forces among neighboring
particles and the applied loads. The exact description of the concentration tensor,
however, does not lend itself to elegant or efficient computer implementation. To
circumvent this difficulty, this tensor is defined with a secant approximation that
retains the essential properties of the exact description. The formulation allows
finite motions of the individual particles, but the macroscopic material response is
formulated based on infinitesimal theory. The model describes only the material
overall response and leaves the finite rotation and/or large deformation of the

assembly of particles for a future application.

Throughout the application of an overall stress history, the onset of localization
in the particle assembly is investigated. The model’s macroscopic constitutive
relation falls neatly within previous localization analyses of Rice [30] and Rudnicki
and Rice [31]. Localization is interpreted as an instability in the macroscopic
constitutive description of the material’s deformation. Thus, it is possible for
a material to undergo localized deformation even before the constitutive relation
ceases to become invertible, or even before some related indication of ideally
plastic response is met. The macroscopic model’s framework allows the natural

incorporation of this localization analysis.

The next section describes the format of the presentation of the

micromechanical-macromechanical model.

1.2. Structure of Presentation

Chapter 2 presents the kinematics of particle motion from a finite-displacement
viewpoint that includes particle rotation. This chapter also details the contact
model constitutive relation for describing the particle-to-particle interaction. These
equations will then be specialized to a two-dimensional assembly consisting of rigid

circular disks.




Chapter 3 describes the field equations essential for deriving the
micromechanical-macromechanical connections between the overall response of the
granular material and the constituent particle behavior. This chapter also presents
the macroscopic constitutive relation used for modeling the overall response of the

material and for predicting the onset of localization in the control volume.

Chapter 4 and Chapter 5 present the numerical algorithms for determining
the displacement vector of each particle when the imposed boundary conditions are
strain-controlled and stress-controlled, respectively. The notion of a repeating cell
essential to the numerical implementation of the model will also be described as
part of Chapter 4. Chapter 5 pays special attention to the stress driven problem

and the exact steps necessary to solve this problem.

Chapter 4 and Chapter 5 end with two-dimensional plane-strain numerical
simulations on regular and random initial packing of circular disks. The examples
demonstrate the model’s ability to capture the periodicity of the control volume,
its invariance under rigid body motion, and its convergence characteristics for both
boundary conditions. Experiments which include a localization analysis will also be -

presented.

Chapter 6 focuses on model validation. This chapter includes a secant
approximation to the Hertzian contact theory to describe the contact law between
two particles. The performance of the numerical model is then compared with

experimental plane strain tests on dry sands.

Chapter 7 extends the dry model to the case of saturated granular assemblies.
A continuum methodology is pursued to predict the pore pressure changes in fully

saturated granular assemblies as a result of changes in the soil’s microstructure.

Chapter 8 summarizes the work done. It also contains recommendations for

further study and for extension of the model developed in this thesis.




Chapter 2

Micromechanical Relations

2.1. Introduction

The fundamental elements of the model framework rest on the interpretation
that the overall response of an assembly of particles represents the behavior of a
uniformly deforming macroscopic point in a granular material. During loading and
unloading of the assembly, constituent particles experience locally discontinuous
motions as unbalanced particle contact forces drive them towards new equilibrium
positions. Within the assembly, each discrete particle can be visualized as a ‘node’
connected to contiguous nodes via ‘elements’ having normal and tangential degrees
of freedom. When a contact forms between two particles, an element is created

and its loading history tracked until the particles separate causing the element

to disappear. Thus, throughout the loading history, the number of nodes in -

the assembly control volume remains constant but the number and orientation of

elements may fluctuate.

Attention in this chapter focuses on only the interaction of two contdcting
particles (nodes) within the assembly control volume and their contact element.
First, the kinematics of the particles motion are considered assuming a finite
displacement of the two particles. Next, the constitutive equation describing
the contact element’s elasto-plastic behavior will be presented in the context of

plasticity theory. Finally, the constitutive relation will be integrated assuming a

finite incremental motion.




2.2. Particle kinematics

Consider a finite-sized, spherical particle A. Within particle A, let dX4
represent a material vector in the undeformed configuration, and de4 denote the
position occupied by dX4 in the deformed configuration. Assume d X4 and de
are measured with respect to the particle centroids X4 and 24 respectively. Thus,

the position vectors in the undeformed and deformed configurations of any point in

particle A are given by

XA=XA4dx4, 5 (2.1)
et = a4+ dz?. (2.2)

With reference to the undeformed configuration, the deformation gradient F'

relates the material vector d X4 to the vector de? via
dz? = FA.dX*4, (2.3)
where
FA=RA*. U=V.RA, (2.4)

and U and V are the right and left stretch tensors, respectively, and R?* is the
orthogonal rotation tensor. For a rigid particle, U = V = I, the identity tensor.
The material vector d X4 only experience a rigid body rotation and displacement

but no stretch as seen by reducing (2.3) to
de? = R* - dX*. (2.5)

Thus, particle A only undergoes rigid body rotation and translation.

To quantify this result, let the centroidal particle displacement d* be defined
by d4 = &4 — X4. In the deformed cénfiguration, the position vector of any point

in particle A then becomes
et = XA +dh+ R - dX4. (2.6)

A

The position vector £ can be found by successive application of the translation d

and a rigid body rotation R* of the material vector’ dX4.

9




Now, consider a contact point between two spherical particles A and B. With

respect to the undeformed configuration, the contact point at C has a position vector

given by
XC=X44rNA=XB 4 BNB, (2.7)
where 4 and rB denote the particle radii, and N4 and NP represent the unit
outward vectors through C. Since N4 = —N B, these vectors can be written as
NA = _NB = (X8 - X4)/(-" +rB). (2.8)

With respect to the deformed configuration, the contact point at C has a position
vector given by (2.6) as .
¢ =34 +riRA. N4, (2.9)

Likewise, a new contact point ¢ in the deformed configuration has a position

vector given by
2 = &4 +rint = 28 4 rBnB (2.10)
A

where the unit outward vectors n and n? are found to be

nt = —nf = (2% - 24)/(* + ). (2.11)

In general, the new contact point ¢ does not coincide with the old contact point C.

Taking the magnitudes of equations (2.7) and (2.11) yields

rA 4 rB = || X8 - X4 = 2P - 24). (2.12)

If (2.12) is not satisfied, the particles will either separate or overlap. The initial and

final indentation becomes, respectively,
A=rt+rB X8 - X4 (2.13)
§=r4+rB |28 - 24| (2.14)

where A, > 0.
Now, consider the relative rotation of the contact point on particle A from C

10




to c. This rotation is given by the vector
64C = ¢AC §AC (2.15)

where

04¢ = (R* - N*) x n?/sin |04¢], (2.16)

and 64C represents the magnitude of the relative rotation, and 64C denotes the
unit normal to the plane on which the rotation occurs. Similar results are obtained

if the contact point is interpretéd as belonging to particle B.

If particle B is fixed against rotation and displacement, the magnitude of the
contact slip is given by

v = gACrA (2.17)

A

which represents the length of an arc on the surface of a sphere of radius r*,

0AC

subtended by the angle , and lying on a plane with unit normal 64C. If particle

B also rotates, the slip becomes

v =644+ 0% y=|. (2.18)

If ACrA = —9BCrB then v = 0 and particles A and B simply undergo pure rolling.

The rotation vector relationships collapse neatly for 2D-plane strain analysis.
Consider the same particles A and B, now represented by circular disks with radii
r4 and r8 on the z;, zo-plane, respectively. In this case, the rotation of particle A
defined in (2.5) becomes

R'=

A : A
[cosO —sin @ ] , (2.19)

sin@4  cos 94

where 64 denotes the rigid body rotation of particle A.

The relative motion of the contact points is now given by the scalar angular
rotations #4€ and #8¢ which from (2.15) and (2.16) can be written as

sin04C = e3 - (R - N4) x n?, (2.20)
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0 Old Contact Point
® New Contact Point
o-e-0 Slip=7y

Figure 1. Slip between two contacting circular disks.

where ej3 is the unit basis vector in the z3 direction. Expanding the right-hand side
of (2.20) gives

sin 4C = cos 64 es - N4 xn? —sing4d N4 . n4
= cos 04 sin ¢ — sin 64 cos 6€
= sin(6¢ — 64), (2.21)
where ¢ denotes the rotation of the unit normal vector (assumed positive

counterclockwise). A similar result can be obtained for particle B.

Thus, equation (2.21) implies that the relative rotation of the contact points
equals the change in direction of the unit normal minus the total rotation of the

particle
94¢ = ¢ — 94, (2.22)
08¢ = ¢C — 98 (2.23)
The particle slip can be defined analogously to (2.18) as
v = 0404 4 ¢BC, B (2.24)

assuming that A, 6 > 0. Physically, the slip v represents the tangential stretching
of the contact spring which, for large rotations, wraps around the particle sides as

shown in Figure 1.
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2.3. Constitutive relation for particle contacts

In the following, Mohr-Coulomb frictional resistance to slip governs the
microstructural rearrangement mechanism between two particles. Slip between two
particles cannot occur until the contact shear force reaches a critical value. This
particle contact model is analogous to crystallographic slip where slip only occurs
on well defined slip systems when a crjtical resolved shear stress is achieved. The

slip plane and slip direction uniquely define the slip system.

In crystal slip, an a priori known set of slip systems constrain the direction and
location of slip. The central task lies in choosing a set of independent active slip
systems from a pool of known linearly dependent potentially active slip systems.
However, particulate slip occurs.in a direction randomly constrained by neighboring
particles but on a known contact plane with a normal vector parallel to the
branch vector connecting contiguous particle centroids. Therefore, in contrast to
crystallographic slip, as many potential slip systems exist as there are admissible
slip directions — an infinite set. Since these systems all lie in the same plane with
only different slip directions, the problem of dependent slip systems does not exist.
For more information on the exact selection of the active crystal slip systems one

may see Borja and Wren [32]. -

In the following, only two dimensional circular disk particles are considered.
The formalism of plasticity theory has been adopted for describing the constitutive
model for an ideally plastic and work-hardening particle contact. At the contact
points, the particles will exert a normal force fy and a tangential force fr through
their contact element. Each contact element is represented as a pair of springs
with stiffnesses ky and kp. The associated deformations are given by a normal
indentation § of the normal spring and a slip 7 in the tangential direction. Figure 2
shows the sign conventions for the forces and the deformations. In condensed form,

the contact element forces, deformations, and stiffness are

N

If the spring stiffnesses are constant and ky > 0, then the indentation becomes very

small, and the particles may be considered rigid. A more elaborate constitutive

13
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Figure 2. Constitutive® models for indentation and slip at
contact points.

model for the contact forces is provided by a class of nonlinear elastic contact
theories where the spring stiffnesses are not constant (see e.g., [11, 12}), but this

could engender additional numerical complexity.

On a particle level the rate-constitutive equation for the contact element is

given by

F = H(§)K® - D = H(§)K® - (D - DP), (2.26)
where D¢ and DP are the elastic and plastic components of D, respectively, and
H(8) is the Heaviside function which takes on the value of unity when § > 0 and

zero otherwise. Note that setting large spring stiffnesses results in a rigid-plastic

contact model.

Plastic tangential slip takes place when the tangential contact force reaches

a critical maximum value of the Mohr-Coulomb frictional resistance given by the

14




expression

F=\fr|-a+ fxtang =0, (2.27)

where ¢ is the particle-to-particle angle of internal friction, and « is the cohesive
force (for a purely frictional contact @ = 0). In the terminology of crystallographic
slip, the particle contact becomes potentially active when F' = 0. Equation (2.27)
represents the yield condition corresponding a straight line separating the elastic

and plastic responses. The elastic region is given by the set
E={fre® |F:=|fr|-a+ fytang <0} . (2.28)

Following plasticity theory, the flow rule defines the direction of the plastic slip

vector DP by assuming a plastic potential function of the form

G = |fr| - a+ fytany, (2.29)

where the friction angle in (2.28) has been replaced by the dilation angle 1. Hence,
the flow rule G in which ¢ = 0 gives

b”:{ﬁ%}:A—g%:/\{(l)}. (2.30)

Note that the consisteﬁcy parameter A has the physical meaning of being the particle

contact slip itself.

The constitutive equation (2.26) can now be expanded to give

f:H(a){k ".""Ns, )}. (2.31)

In terms of the centroidal particle displacements and rotations, the indentation rate
6 for small § can be found from (2.14) as

b=nt-(d*-dP)=nP . (d® -dP). (2.32)

Similarly, the slip rate 4 for small § is found from (2.22)-(2.24) to be

§ = 6ACrA 4 §BCB (2.33)
94C = §¢ — 94, (2.34)
8¢ = ¢ — ¢% (2.35)
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in which

, dB — dA dA — dB
c_{(,. na,d —d” C_(v..nB 3 —d" c .
0~ = (63 N* x g )secﬂ (83 N7 x rA+rB>SeC9 . (2.36)

The hardening law represents an important element of any constitutive relation.

For simplicity, a linear hardening law has been assumed of the form
&= H'|5|. (2.37)

Note that when H' = 0, the particle contact becomes ideally plastic. Thus, the
consistency condition which requires that the yield condition be satisfied as long as
the contact is in the plastic state gives

!

A= AP = (1+%)_1(7+%tan¢5>. (2.38)

The loading/unloading conditions for a particle contact slip system can now be

written as follows:

1. the contact unloads or is inactive (‘stick’ mode) if

F <0,or F=0and ) <0; (2.39)

ii. the contact loads or is active (‘slip’ mode) if

F=0and XA > 0. (2.40)

The constitutive relations (2.26) can be summarized by relating the particle

forces F to the contact movement D as follows:

F=H@)KPD, (2.41)
where
K?=K°-(1-K), (2.42)
and |
0 0
K= , (2.43)

kn H'
R tan e Ty
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and 1 is the second-rank identity tensor and K¢ are the elastic-plastic moduli. The
constitutive relation (2.41) for a general particle contact has two branches which
corresponds to continued loading (‘slip’) and to unloading (‘stick’) (see Figure 2).
Clearly, if the slip system is inactive or unloads (‘stick’), the response is purely
elastic and (2.42) reduces to K = K°¢. |

2.4. Contact force integration

Let the superimposed V denote the time rate of change co-rotational with the

contact normal. Consider a rate constitutive equation of the form
v . .
F=R-F+R.F, (2.44)

where R represents a transformation operator which rotates the local contact
element axes to the global (Cartesian) coordinate system. The first term on the
right-hand side of (2.44) is given by (2.41) and represents the material response due
to deformation of the contact element. The second term accounts for rotational
effects. For tWo—dimensional problems on the plane zj,z9, the rotation and

rotational rate take the form

cosf —sind
= [sin@ cos § ] ’ (2'45)
. sinf cosf| ;
Rz_[-—cosﬂ sina]e’ (2.46)

where 6 is the orientation of the contact normal with respect to the positive Cartesian
z1-axis. Since N is fixed and 8 represents the rotation of n relative to N, 0= 6%,

see (2.36).

The form of (2.44) facilitates an exact analytical integral of forces which leads

to an incremental constitutive equati.on of the form

il v

Af = F dt = Rpy1Fn+1 — RuFo = a1 — Ja, (2.47)

tn
where fat1 = Rut1Fnt1, fo = RuFu, and Fuy1 = {fn, fr}'. The forces f, and
faa1 will be used in Chapter 4 to construct internal force vectors for each contact

element.
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Expressions for the contact forces Fp41 will be obtained by considering
contacting particles A and B. Assume that at time %, the positions of the
particle centroids, 4 and z?, are well defined. Then integrating (2.41) yields

the component fy:

(fN)n+l - "He(én-i-l)kN&n—!-l ) 6n+1 = TA + TB - ”ln+l ” ) (248)

where

Lipn=XB+d8,, — (X4 +dly)), (2.49)

and H. is a ramp function of the form

H5(5n+1) = {5n+1/6, if 0 < 5n+1 <eg (250)
0, if 6p41 <0.

in which € is a ‘sufficiently small’ number. This ramp function approximates the
Heaviside function such that as ¢ — 0, H.(6) — H(6). It makes the integrated
constitutive equation continuous in the sense of Lipschitz [33] and regularizes an
otherwise non-regular contact problem. The ramp function renders the discrete

contact forces amenable to linearization.

The tangential force fr reflects the previous slip mode between two contacting
particles and contains the material memory. Thus, assuming that at time ¢, the
magnitude, and the sense of the force (fr), are known, the slip increment can then

be simply evaluated as

Ay = AGACHA 4 NGB (2.51)
where
AGAC = NOC — (04, — 02, (2.52)
AOBC = A6C — (0B, ~ 0By, (2.53)
and
AGC =sin"!(ez - nd x n;;‘_,_l) = sin"!(e3 - nP x nf_H). (2.54)

Now, the contact modes (2.39) and (2.40) can be defined for a finite incremental

motion assuming the particles remain in contact during the time step as follows:
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i. the contact is in ‘stick’ mode if

I (fT)n + HekTA'Y I < ap + kN6n+l tan ¢, (2'55)

and
fr = (fr)n + Hekr Dy, (2.56)
Ay =0, (2.57)

otherwise;

ii. the contact is in ‘slip’ mode:

fr = sign(ff)an41 — (f¥)n+1tan é, (2.58)
where
ff%“r = (fT)n + H krAv, (2.59)
Qn41 = an + H'|AAP|, (2.60)
|/¥] — om + fntan ¢
Pl = 2.61
[A77] H.kr + H' ’ ( )

and fff represents the trial tangential force, an41 denotes the updated cohesive

force, and A~4P is the plastic slip.

The steps necessary to calculate fy and fr are summarized in Box 1. Note
that because the load increment is finite and the particle assembly may be locally .
discontinuous, it may happen that during the iteration a new contact is formed
between two previously disconnected particles. Unless a very small load increment
is employed, it may never be known when the initial contact is actually formed
between these two particles. Box 1 thus presents two options to bracket the expected
response. For IOPT = 1, initial contact is assumed to take place at time tni1, in
which case, (f7)n+1 becomes identically equal to zero (see Step 3); for IOPT = 0,

initial contact is assumed to take place instantaneously at time 5.
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Box 1. Contact force calculations.

Step 1. Compute én+1, (fN)nt1 = —He(6n+1)kNbn+1-
Step 2. If (f¥)a+1 20, (fN)n+1 = (fT)n+1 = 0 and return.
Step 3. If 6, = 0 and IOPT =1, (fT)n+1 = 0 and return.

Step 4. Compute A~.

Step 5. Compute (fr)nt+1 = (fT)n + HekrAY.

Step 6. Compute frax = @n — (fN)n+1 tan ¢.

Step 7.1t l(fT)n+1| > fmax, (fT)n+1 = (an+1 - (fN)n+1 tan ¢) Sign(fT)n+1-

Step 8. Return. O




Chapter 3

Micromechanical-Macromechanical Connections

3.1. Introduction

The particulate nature of granular materials causes the macroscopic applied
loads to be carried at contact points between grains. Thus, employing continuum
concepts to describe the overall response of a material with microstructure and
particulate mechanics to describe of constituent particle motions presents a modeling
challenge. For example, since stress represents a macroscopic continuum concept,
its use for a particulate medium requires careful micromechanical considerations of
particle contact force transmission. Likewise, the notion of macroscopic kinematic
quantities demands special interpretation of the role micromechanics plays in
describing the motion of individual particles. Hence, the overall stress and kinematic
relationships establish crucial connections between the macromechanical description

and the fundamental underlying particulate mechanics.

This chapter describes the connection between the particle contact forces and
the overall stress. The kinematical description of the overall velocity gradient will
also be considered in terms of an average of appropriate microscopic quantities.
These two essential connections then form the basis for the macroscopic constitutive
relation. The development of the criterion for predicting the onset of localized

deformation follows naturally from this relation.
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3.2. Macroscopic stress field

The overall stress acting on a particle assembly produces contact forces at
contacting points of the constituent particles. Independent of the nature of these
contacts, the basic objective in this section is to describe the overall stress in terms

of the contact forces and some geometric characteristics of the granules.

Consider a representative sample of a granular mass of volume V' and surface

area S. Let two control volume particles A and B, with centroids at z4 and

AB

respectively, have a contact point at ”° as shown in Figure 3. The branch vector

148 connects the centroid of particle A to the centroid of particle B and is given by
4B = g8 _ g4, (3.1)

Let 42 and B4 denote, respectively, the contact forces exerted on grain A by
grain B and vice versa, and therefore FAB = _£BA

Neglecting inertia and gravity terms the balance of linear momentum for

particle A requires

> =0, (32)
p=1

where fA48 represents the contact forces exerted on particle A by particle B, and
x denotes the so-called coordination number for particle A (i.e., the number of

particles contacting A).

The balance of angular momentum for particle A yields
Y P x (@ -zt =0, (3.3)
B=1

where z4? is the position vector of the contact point between particles A and 3.

Summing the contributions from all particles contained in the control volume gives

N
Y e xl=0, (3.4)
A=1
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Figure 3. Two control volume particles with centroids at o4

and a:B , contact point at a:AB , and branch vector lAB .

where a represents a particle contact such as AB, and N denotes the total number
of contacts in the control volume. An important implication of equation (3.4) is

that it renders the following tensor symmetric
N N
dorrelr=) I"e . (3.5)
a=1 - a=1

To relate the contact forces to the macroscopic stress, the principle of virtual
work is employed in the manner of Christoffersen et al. [29]. First, the overall stress,

o is given by its natural definition [24, 25]

5= L o(x ‘ )
"‘v/v () 4V, (3.6)

where o () represents the variable stress field in equilibrium with the overall applied

boundary traction T, i.e.
o-n=T on S, (3.7)
where v denotes the exterior unit normal to S.

Now, consider a sufficiently smooth overall virtual displacement u that results

in a virtual separation A® of the ath contact force. Assuming that the traction T’
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is in equilibrium with the contact forces f¢, the virtual work principle requires

N
1
— | T -udS= R 3.8
7 31 (3.8)

Since the virtual displacement field can be chosen arbitrarily, consider the linear
field

u=¢-z+c, (3.9)

where ¢ and ¢ denote, respectively, an arbitrary second order tensor and an arbitrary

vector. The virtual contact separation compatible with this field is given by
A =¢ 1% (3.10)

Appendix A shows that this representation of ¢ - I* is reasonable to a first order

approximation to A?.

Substituting (3.9) and (3.10) into (3.8) and employing the divergence theorem
gives
1 N
I _ aoqa| =
d).[v/vo(:c)dv (;f Q| =0. (3.11)
With the symmetry property (3.5) and the definition of the overall stress, equation
(3.11) reduces to ‘
1 N
ag==) (fFel*+1°x f%). (3.12)

a=]
Note that this expression is dimensionally consistent if N is interpreted as the
number of contacts per unit volume. The derivation of the macroscopic stress &
requires the assumption that the virtual displacements are small. Thus, the overall

stress inherits a spatiaﬂ definition, and & may be termed the overall Cauchy stress

arising from the contact forces.

It is important to recognize that from each pair of contact forces at a given
contact (i.e., A8 or £84 for contact AB) only one enters the summation in (3.12).
The choice of the vector I* determines the choice of f* (i.e., when I* = 148
fo = f4B). In this manner, at each contact, a pair of vectors I* and f has a

unique tensor product and contribution to the overall stress.
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3.3. Macroscopic deformation field

In this section, the relationships between the macromechanical and
micromechanical kinematic quantities will be described. Consider the same
representative control volume composed of discrete particles, and again let V denote
the volume and S the surface area. Recall that this volume represents a point in
the macroscopic sense and that the overall quantities (stresses, deformations, etc.)
are the macroscopic responses themselves. Now, assume a velocity field v € R™+d

that is sufficiently smooth over the problem domain, i.e.,

L= g:: = constant in V, (3.13)

where V = V U S is the closure of V, and L is the uniform overall velocity gradient.
Note from the overall velocity gradient L, the overall rate of deformation D and

spin W can be evaluated via
D =symm(L); W =skew(L); L=D+W. (3.14)

A micromechanical connection with (3.13) and (3.14) can be described in the manner

of Nemat-Nasser and Mehrabadi [23].

Consider a unit cell centered at a point with position vector & experiencing a
uniform velocity gradient L. As this unit cell shrinks to a point, one recovers the
macroscopic definition (3.13). However, the cell must be large enough to contain a
sufficient number of particles to capture the overall behavior of the material. Within
the control volume the local velocity field v = v(x) will not generally be a linear
function of & but will vary according to the typically irregular particle motions. As
a result, the associated velocity gradient L will also be irregular and is given by the

expression

8’0
L=% (3.15)

where % represents the position vector of a point in the neighborhood of @ within
the unit cell.

Applying the divergence theorem to (3.13) and (3.15) yields

—/f:ﬁdS /—dV L, (3.16)
Vs




and

1 1 ov
G [onas =5 [ Zav=w) (3.17)
where the symbol (-) denotes an average over the control volume, and 7 again

represents the exterior unit normal vector to S.

If the boundary particles move uniformly such that ¥ = v on S, then the
left-hand sides of (3.16) and (3.17) are identical, which implies that

IL=(L). (3.18)

The physical meaning of this equation is that the macroscopic velocity gradient

equals the volume average of the local particle velocity gradients.

Now, let A be a sufficiently smooth macroscopic displacement field associated
with the overall velocity field ¥, measured with respect to the configuration at time

station t,. Then, the updated position vector at any time ¢ > ¢, is
z =X, +Au, (3.19)

where X, is the configuration at the beginning of the time step.

The associated overall deformation gradient for this motion is

- oz - 15JAXT)
F=or=F+5, (3.20)

where F, = 0X,/0X. Now, if X, is taken as the reference configuration, then
(3.20) degenerates to

Oz :1+6A'&

}=8Xn | aXn-zF-F,;l. (3.21)

Since the overall velocity gradient L is a spatial tensor, then

L=F.F! (3.22)
—f B Fjl (3.23)
=57, (3.24)
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i.e., L does not depend on the choice of the reference configuration.

Equation (3.19) can be used to obtain the updated configuration at time t,4;

as
Xot1 = Xn + Ay . (3.25)

Now, if A, is assumed to be a homogeneous function of degree one, then Euler’s
theorem for homogeneous functions gives
A,

Aty = X,

X, =A X, (3.26)
where A = 0Au,/0X,. The macroscopic velocity field associated with (3.26) is
7=A-X,. (3.27)

Substituting (3.26) and (3.21) into (3.24) gives the overall velocity gradient at time
tn41 as
L=A-(1+A4)". (3.28)

Hence, for L to have a uniform distribution over the control volume V, the tensor A
should be spatially constant over V. Physically, the macroscopic tensor A provides a

measure of the overall deformation experienced by the macroscopic point of interest.

Conceptually equation (3.26) indicates that if adjacent control volumes lie
sufficiently close to each other, they may overlap. This observation is consistent
in order for the macroscopic tensor A (and thus, the overall velocity gradient L) to

have a sufficiently smooth distribution over the problem domain.

3.4. Macroscopic constitutive relation

A macroscopic constitutive relation will be useful for characterizing the overall
behavior of the granular material in terms of its particulate nature. As will be
seen in the next section, the macroscopic constitutive relation plays a central role
in the development of the localization criterion for the material. Localization is

interpreted herein as an instability in the macroscopic constitutive description of
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the inelastic deformation of a material. The constitutive equations will also be of
particular importance in the development of the response of a macroscopic point to

an applied overall stress history presented in Chapter 5.

The macroscopic constitutive relation depends heavily upon the micromechan-
ical-macromechanical connections that bridge the continuum and particulate
descriptions of the granular material. First, the dependency of the overall
stress on these connections will be determined. The particle contact force
integration presented in Section 2.4 provides the contact forces f* for evaluating
the macroscopic stress & given in (3.12). The local constitutive relation describes
these forces in terms of the particle’s centroidal motion which in turn depends
in part on the applied overall displacement gradient A. In terms of overall
quantities, an implicit macroscopic constitutive equation can be written to capture

this relationship as follows:
Ont1 = Ont1(A), (3.29)
i.e., the overall stress is a function of the components of the displacement gradient A.

In principle, (3.29) can always be written in rate form. For example,

differentiating (3.29) with respect to time and using (3.28) gives

. O .
oo -
=——1 L. 31
94" (1+A) (3.31)
=K:L. (3.32)
The fourth order tensor K represents an overall moduli tensor with components
Kiisi = =—(81m + Aim) » .
Gt = 70— (Om + Aim) (3.33)

where &}, denotes the Kronecker delta. When the components of the displacement
gradient A are small, then equation (3.33) reduces to
55’,;]'

e (3.34)

Kijn=

Since slip governs the microstructural rearrangement mechanism, a vertex will

de_velop on the macroscopic yield surface [30,31]. In other words, the relation (3.32)
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will have an infinite number of branches corresponding to different directions of L.

Thus, plastic ‘normality’ in conjugate deformation variables is lost [30], and the

moduli tensor K is restricted to only minor symmetry
Kijn = K. (3.35)

The minor symmetry of K with respect to the indices ¢ follows directly from the
symmetry of &. The minor symmetry with respect to the indices k! results from the
fact that L is rotation-free, i.e., from a macroscopic standpoint the strains are small.
Thus, the tensor K can be used for small-strain stability analysis as demonstrated

in the next section.

3.5. Localization criterion

Critical conditions are now sought at which the material’s macroscopic
constitutive relation may allow a bifurcation from a homogeneous or smoothly
varying deformation into a highly concentrated non-uniform deformation in a planar
band. Outside the localized band, the conditions of continuing equilibrium and
continuing homogeneous deformation must be met. The onset of localization results
from the loss of ellipticity of the continuing velocity equilibrium equation

oo
2=

The problem is then to determine conditions at which (3.36) is satisfied across some

0. (3.36)

planes of orientation n.

Consider a macroscopically homogeneous, homogeneously deformed material
subjected to quasi-static increments of deformation. For the velocity field to remain
continuous at bifurcation, compatibility requires the velocity field to be expressed

as

L’=1°+gn, (3.37)

where superscripts b and o denote band and outside the band respectively, and g is

a function only of the distance across the band, n - @, and is zero outside the band.
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The condition of continuing equilibrium (3.36) also demands that the traction be

continuous across the discontinuity planes

n-&=n-é&. (3.38)

With (3.32), the constitutive equation inside the band is
& = Kb Lt (3.39)
and substituting in (3.37) and (3.38) yields
(n-Kb-n)-gzn-<K”—Kb):jL°. (3.40)

A continuous constitutive response is assumed prior to localization, i.e., K° = K b,

Thus, for a non-trivial solution for g, the condition for localization becomes
det[A(n)] =det[n-K -n]=0, (3.41)

where A = n - K - n is the so-called ‘acoustic tensor.” Appendix B contains the

details for calculating the orientation of the band n in two dimensions.
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Chapter 4

Strain-driven Problem

4.1. Introduction

With the background of Chapter 2 and Chapter 3, a solution strategy
may be constructed to derive the response of a macroscopic point in a granular
material from the behavior of a particle assembly. The solution model adopts
the conventional hypothesis in computational plasticity by assuming a deformation
driven problem, i.e., the given overall displacement gradient determines the overall
stress response. The mathematical formulation prescribes an overall uniform motion
to an assembly of particles and then allows the particles to move in a microscopic
sense. Throughout the particle motions, contacts may form or break altering the
material’s microstructure. The contact forces that develop between particles can

then be used to evaluate the overall stresses.

This chapter considers the solution of the deformation driven problem in detail.
The formulation is presented in the context of an analogy with the finite element
method where the control volume particles represent nodes and their contacts denote
elements. Special attention is given to the application of the uniform deformation
to the assembly of particles. The notion of a repeating, or periodic, cell will be
presented which allows the prediction of the overall response of the control volume

without the imposition of boundary particle displacements.
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4.2. Algorithm for problems with an imposed deformation history

Consider a two-dimensional assembly of rigid circular particles. Each particle
contains two translation degrees of freedom in the z;, z2 plane and one rotational
degree of freedom about the z3 axis as shown in Figure 4. The constituent particles
form a moving mesh where the particles have been replaced by nodes and the
contacts are represented by the stick/slip elements of Chapter 2. The associated
grid continually changes as particles move to new positions breaking contacts and

forming new ones, i.e., severing contact elements and forming new ones.

The internal force vector at time ¢, for a typical contact element number ‘¢’

connecting particles A and B is given by

t
f(e6x1) = {ff+1a?"AfT, ff+1,7"BfT} ) (4.1)

where the balance of linear momentum (3.2) requires that #+1 = — ff_{_l. Recall
that ff_i_l and ff+1 represent that internal force vectors reckoned with respect to
the Cartesian axes z, zo and the rotation matrix R relates them to the normal and

tangential contact forces in F via

Fan = R Fil,s (4.2)
where
Foir = {fn, fr}" . (4.3)
The corresponding particle degrees of freedom are
¢
dfsx1) = {dﬁ+1,9f+1adf+1,9f+1} ) (4.4)

where dﬁ 11 represents the vector of unknown nodal displacements for particle A

and 64 1 denotes the unknown rotation of particle A (see Figure 4).

Imposing the momentum balance equation for every particle in the control
volume and neglecting inertia and gravity terms results in an equilibrium equation

of the form
el

Finr(dut1) = | J £ =0, (4.5)
e=1
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Figure 4. Particle degrees of freedom on the 23, x2 plane.

where the symbol U denotes the assembly operator. To determine the vector of
nodal displacements d,41 that satisfies (4.5) at each time step, Newton’s method

with line search can be employed:
Fiyp(dui)Ad = Finr(dyy); dith —dpy —aldd; &3 =da,  (4.6)

where 0 < a < 1 is a line search parameter introduced to insure that the iteration
(4.6) is norm-reducing [34,35]. In (4.6), F}NT(d£L+1) denotes the algorithmic tangent

operator derived from the element contribution

el
Fiyr(dir) = | £(d511) - (4.7)
. e=1
By definition, the solution has converged when
1Ftnrll/ I1F vl < ttol, (4.8)

where rtol represents a prescribed error tolerance.

Taking the derivatives of (4.1) results in the following element contributions
F¢'(d% ) to the tangent operator (omitting subscripts ‘n + 1’ for time step and

superscripts ‘¢’ for iteration counter, for simplicity):

- fl(dA) fl(aA) fl(dB) f'(&B) .

rAfp(dh) rAfp(04) rAfp(dP) rAfp(0P)

() = (4.9)
_fl(dA) _fl(eA) _fl(dB) _fl(aB)

_TBf'}(dA) TBffr(gA) TBft;"(dB) TBfé‘(HB)- (6x6)
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Box 2. Strain-driven algorithm.

i. Given ALY, Ay, and i =0.

ii. Compute Fjyp(di,;).

n
vee y N . _1 .
1. d:;:-ll = d:z+1 - [FIINT(d:z-i-l)] '
iv. pit = o) Fo(dRY)

v. IF [|#+1)|/||#°] < rtol, GO TO 5.

viit—t+4+1and GO TOi. O

where

F@h) = -f(d?); P =r5(0%); (4.10)
(@) = —fp(d®); PP o) = rtfr(0®). (411)

Appendix C contains a complete discussion of the derivatives contained in (4.9).

In general, the matrix FI’NT(dfl_l_l) will be neither symmetric nor positive
definite. Furthermore, it may be singular with isolated particles or clusters of
particles. The matrix F}yr(dl +1) may have a changing bandwidth from iteration
to iteration as a consequence of new contacts being formed and old contacts being

broken. Section 4.4 discusses these numerical issues in detail.

Box 2 contains the steps necessary for solving a deformation-driven problem.
The algorithm depends heavily upon the calculation of the internal force vector
fé(d,41) which represents the particle contact force contribution to the internal
force. Recall that Chapter 2 described the role that the spring stiffnesses ky and
kr play in the contact constitutive equations used for calculating the contact forces.
In the context of the deformation-driven problem of Box 2, these spring stiffnesses
may be considered as penalty parameters rather than as physical measures of the

true particle rigidities.
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4.3. The notion of a repeating cell

The dependence of the vector f¢ on the imposed displacement gradients A
follows directly from the initial imposition of a uniform motion of the particle
centroids according to (3.25) and (3.26). Assume that the particle centroids are
given by X', A=1,2,..., N, then the new configuration of a typical particle A
can be written as

pt=(1+4) X2 (4.12)

This motion will generally perturb the momentum balance equations as contacting
particles either separate, overlap, or slip during the uniform motion. The unbalanced

forces create residuals in the force vector,
r=Finr(A-X2) #0, (4.13)

where (4.12) has been used as an initial estimate for Newton’s method (4.6). The
continued dependence of f¢ on A follows from the dissipation of the residual
vector r. Through the Newton iteration, the particles seek their equilibrium
configuration while the sides of the control volume are held fixed according to the
displacements produced by A. Thus, the sides of the unit cell constrain the particles

to move according to the deformed configuration imposed by A.

As the iterations progress, the particles will translate and rotate to find their
equilibrium positions, which could be drastically different from the imposed uniform
motion. Hence, it may happen that v # @ even on S, and so one cannot simply
prescribe the motion of the boundary particles in order to constrain the problem. To
determine the particle motion that is independent of the boundary dlsplacements

the notion of a repeating, or periodic, cell has been employed.

Periodicity of the unit cell requires that the control volume of interest be
surrounded in all directions by identical parallelepipeds (or rhombuses, in two
dimensions). Physically, the notion of a periodic cell means that if a particle leaves
the control volume an identical mirror image particle will enter the unit cell from
a contiguous unit cell. Periodicity can be enforced for each pair of potentially

contacting particles, A and B, by assuming that particle A could be in contact with
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Figure 5. Periodic control volume subjected to a uniform
deformation. As a particle A leaves the reference cell an
identical mirror image particle A’ enters the cell.

either B or one of the images of B in a neighboring parallelepiped (or rhombus).
Figure 5 shows a graphical representation of how periodicity may be imposed for

implicit two-dimensional plane-strain calculations.

In order to describe the basic repeating unit cell, let the basis vectors
(®1,P2,...,Py,,) represent the sides of a parallelepiped (or rhombus) that defines
the control volume V in the reference configuration. Assume that one corner of
the parallelepiped (or thombus) coincides with the origin of the reference frame so
that the @;’s become the position vectors of the corners of V. In addition, let the
vectors (@1, P2,---,Pn,;) Tepresent the sides of the same volume in the current

configuration such that
pi=14+A4)-&;, 1=12,...,n4q. (4.14)

Now, let A and B represent two potentially contacting particles with respective
centroids at #4 and &2, measured with respect to the current configuration. With
respect to the basis vectors ¢;, the branch vector connecting the particle centroids

#4 and 2B can be written as

&8 34 = ;P (4.15)
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Repeating

/ Cell

Figure 6. Enforcement of the periodicity condition: contacts
are checked between A and B, and between particle A and
the three image particles B’'.

where a sum is implied on ¢ = 1,2,...,ns, and the ¢;’s are some determinate

multipliers. Since the ¢;’s form a basis, then the o;’s are all distinct.

Now, periodicity of the cell can be imposed by assuming that particle B and its
images are located at the corners of a parallelepiped (or rhombus) that is identical to
the unit cell of interest and inscribes the centroid of particle A as shown in Figure 6.
In terms of the current configuration vectors ¢;, the centroidal coordinates of particle

B and its images are given by

~+ B .
z =af - Bipi, (4.16)
where a sum is again implied on 7, and the f;’s are permutations of (0, sign(«;)). For
~B o c . .
example, when 1 = B2 = ... = f,, =0, then & = #B, which is the centroidal
position vector for particle B; when f; = sign(a) and B = ... = f,,; = 0, then

xB . . C . . ", .
& =ab - sign(a )1, which is the centroidal position vector for an image of B,
and so on. Figure 6 shows a graphical representation of the enforcement of the

periodicity condition for implicit two-dimensional plane-strain calculations.

Note that if particle A lies in contact with B, it can never be in contact with any

of the images of B. The element contributions to the residual force vector » represent
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particle contact element contributions and not particle contributions. Thus, one
and only one contact force vector can be added to the residual regardless of the

multiplicity of the particle images.

An important feature of the periodic cell lies in its ability to allow the prediction
of the macromechanical response without the imposition of boundary particle
displacements. However, since periodic cells inherently contain zero-energy modes,
the periodicity condition alone does not guarantee a fully constrained boundary-
value problem. Rigid-body modes may be eliminated by fixing the motion of any one
particle in V, provided that this particle belongs to the ‘principal force chain.’ Rigid-
body modes cannot be removed by fixing an isolated particle, nor any particle in an
isolated cluster. The next section discusses numerical examples and implications of

the periodic cell and zero-energy modes.

4.4. Numerical simulations

This section presents the results of two-dimensional plane-strain simulations on
granular assemblies composed of either regular or random initial packings of circular
disks. Some fundamental properties of granular materials are demonstrated such as
softening and anisotropy. Numerical difficulties encountered during the simulation
process are reported as well. Unless otherwise stated, Table 1 defines the model
parameters used in all analyses. The overall stresses have been calculated using a
volume equal to the initial cross sectional area Ag times a unit thickness. The error
tolerance rtol used in (4.8) ensures that the iteration has converged sufficiently, thus

minimizing the propagation of numerical errors.

Sixty four-particle regular assembly

The initial granular assembly configuration is shown in Figure 7. In this
example, the assembly is assumed to be composed of 64 uniform circular particles of
radius r = 1.0 units and arranged initially in simple cubic packing except that the

adjacent rows of particles have been shifted by 5 degrees. The particle on the lower
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Table 1. Model parameters.

Error tolerance: rtol = 1.0 x 1078,

Normal spring stiffness: ky = 1.0 x 10%.
Tangential spring stiffness: k7 = 1.0 x 10%.
Particle friction angle: ¢ = 30°.

Particle contact cohesion: agp = 0.

Contact hardening parameter: H' = 100.

Ramp function parameter: e = 0.10.

left-hand corner was fixed against translation and rotation to arrest the zero-energy

modes present in the assembly.

The assembly was then subjected to combined isotropic compression and shear
by prescribing ten increments of motion, each increment defined by the following
elements of the tensor operator A in (3.26): Ajy = Ay = -1.0 X 1073,
A2 = Ay = —1.0 x 1072, If second-order deformations are ignored, then
the total motion corresponds to normal compressions of €337 = €32 = —1% and
tensorial shear strains of €19 = € = —10%. The final deformed configuration

after running the analysis over ten time steps appears in Figure 8.

Figure 8 shows that during the course of deformation, rows of particles have
separated into four isolated clusters. This “strain-softening” effect is a typical
result when a granular medium with an initially collapsible structure is subjected
to shearing deformation which is far beyond the material’s ability to compact.
Numerically, this phenomenon will manifest in the form of zeros appearing on the
diagonal of the factorized tangent operator, which are not operated upon during the

back substitution process.

A different result can be obtained with a slightly altered strain history. Using

‘the same initial configuration of Figure 7, the following overall uniform motions are

39




now prescribed: one time step of A;; = Ay = —1.0 x 1072 Ay = Ay = 0;
followed by one-hundred time steps of Ag; = —1.0 x 1073, Aj; = Ay = Ajp = 0.
If second-order effects are ignored, this motion corresponds to a total volumetric
strain of €17 + €92 = —2% followed by a sidesway of 10% (which produces simple
shearing and rigid body rotation). Results of the simulations are shown in Figure 9

and Figure 10.

Figure 9 shows the final deformed configuration characterized by a stable
microstructure. The isotropic compression produces prestressing effects on the
elastic springs and prevents the particle contacts from breaking during the shearing
process. Since shearing involved essentially horizontal particle translation and
scraping, the overall response of the assembly is a direct function of the tangential
spring constant k7. Thus, for a constant H'/kr, the overall stresses can be

normalized with respect to the spring constant k7.

In Figure 10, the normalized overall shear stress, d12/kT, is plotted versus the

overall tensorial shear strain, €12. Specifically, the overall shear stress is evaluated

from (3.12) as
1
012 = §N(flalg + ) (4.17)

The initial straight-line portion of the overall stress-strain plot represents the elastic
stretching of the tangential springs, and is thus also normalizable with respect to the
spring constant k7. On the other hand, decreasing the moduli ratio H'/kr decreases
the Gy9/kp-response at post-yield. The 5-degree initial offset between adjacent rows
of particles causes sequential yielding at contact points, thereby resulting in non-

uniform tangential shear moduli at post-yield.

Sixty-particle periodic assembly

The initial configuration for this example is the same as in Figure 7 but with
four interior particles removed so that the resulting assembly is represented by four
repeating cells. The entire assembly is subjected to 50 increments of motion, each
increment defined by the following elements of A: A;; = Azx = —4.0 X 1074,
Ag1 = A1p = 1.0 x 1073, If second-order effects are ignored, then the total motion

is equivalent to a total volumetric strain of €33 + €2 = —2% and a total tensorial
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shear strain of €19 = €&; = 5%. The resulting deformed configuration, shown in
Figure 11, shows the expected periodicity exhibited by the deformed assembly. If
this problem had been analyzed using only one of the four repeating cells, then the
macroscopic stresses obtained from the sum of the contact forces for each reduced

cell would have been one-fourth of those obtained from the full unit cell.

Fifty eight-particle irregular assembly

The initial configuration of the control volume for this example is shown in
Figure 12. Here, the repeating cell resembles the one used in the sixty four-particle
simulation except that six of the original particles in the assembly were removed.
The control volume was subjected to 38 incremental motions, each increment
described by the following elements of A: A1; = A = -7 x 107% and
A1z = Ay; = 1 x 1073. After the final load step, the deformed configuration is

shown in Figure 13.

Figure 13 shows the deformed configuration for the case where no particle in
the assembly was fixed against rigid-body motion. When this problem was run with
the particle on the lower left-hand corner fixed against translation and rotation, then
the results were the same except for the rigid-body modes. Thus, provided that the
assembly remains stable, rigid-body modes may be allowed without afflicting the
computed overall stress-strain response. In both configurations particle contacts

have broken, and new contacts formed.

Figure 14 and Figure 15 show overall stress-strain curves for this example. The
58-particle assembly has been subjected to a total strain of €7 = €3 = —2.66% and
€12 = €1 = —3.8%. Several observations already mentioned from the previous
examples may be noted again from these results: (a) for a constant H'/kp, the
overall stresses normalized with respect to kr are the same; (b) fixing a particle in
the assembly does not affect the resulting overall stress-strain curve; (c) structural
anisotropy is created by the irregular particle assembly; and (d) continued volume-
preserving shearing deformation produces an overall softening response. Observation
(c) is evident in Figure 14 which shows that during isotropic compression, 517 does

not equal to &22 even though €11 equals €. Observation (d) may be qualified —
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the overall response may harden once again as more stable contacts form from a
collapsed microstructure, as evidenced by the hardening response represented by

the tail of the stress-strain curve of Figure 15.

Finally, the overall stress-strain curve of Figure 16 represents the response

of the same 58-particle assembly to the following imposed strain history: (a)

total isotropic compression of €17 = &2 = =10 X 1072; (b) simple shear
of Ag1s = Aéyy = 22 X 1072 (c) additional isotropic compression of
A%y = A€y = —1.0 x 1072; and (d) simple shear of Agjp = Aéy; = —2.8 x 1072
The simple shear is applied in steps of A¢s = A€ = —-1.0 X 10~3. Both

the initial and intermediate isotropic compression stages resulted in a change in the
overall shear stress 612 due to anisotropy effects. The application of an intermediate
isotropic compression was necessitated by the deteriorating numerical conditioning
of the problem, manifested in the form of lack of quadratic convergence in Newton
iteration, as the overall stress response reaches a plateau. The additional isotropic

compression is seen to have resulted in a gain of shear strength.

One hundred ninety six-particle random assembly

The assembly is composed of 196 randomly arranged circular disks of varying
sizes having a mean radius of raye = 0.0092 units and contained in a cell of
dimensions 0.2566 units x 0.2564 units. The initial positions of the particles are
shown in Figure 17, and are identical to those used in [36]. The control volume has
410 initial contacts and an initial void ratio of 0.1426 (i.e., ratio between total area
of voids to total area of circles) representing a dense packing. To ensure that there
are no “numerical slacks” between adjacent particles due to initial placement, and
that the particles are indeed touching at the contact points, the control volume was

isotropically compressed to initial macroscopic strains of €1 = €2 = —1.0%.

The numerical algorithm is next tested for convergence. The control volume is
compressed further to additional isotropic strains of A€;; = A = —1% applied
in one, two, four, 10, 20, 50, and 100 increments. Table 2 shows the predicted
incremental macroscopic normal stresses, Ad1; and Adg, at cumulative incremental
normal strains of Ag;; = Agy = —0.5% and A¢y; = Aéyy = —1.0%. Note
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Table 2. Convergence test for the 196-particle assembly: isotropic compression
(ky = kr =1 x 10* units).

Cumulative incremental strain, Ag;; = A€ = ~0.5%:
Strain increment, % Stress Adi1 Stress Aggy
1.00 n/a n/a
0.50 45.2789 40.8908
0.25 44.9810 40.6005
0.10 44,7728 40.4470
0.05 44.7013 40.3923
0.02 44.6572 40.3589
0.01 44.6420 40.3467

Cumulative incremental strain, A¢;; = A€y = —1.0%:
Strain increment, % Stress Ad11 Stress Adg;
1.00 110.8596 100.1927
0.50 109.6300 99.2609
0.25 108.9399 98.7138
0.10 108.4900 98.4174
0.05 : 108.3350 98.3125
0.02 A 108.2407 98.2502
0.01 108.2088 98.2289

n/a = not applicable

in Table 2 that the resulting normal stresses are not the same due to anisotropy
effects. In fact, a non-zero macroscopic shear stress of Agys is also produced by this
simple isotropic compression. The results shown in Table 2 demonstrates that the
algorithm is convergent under an isotropic strain field, and that for a volumetric
compression of Ae, = A€;; + A€y = —2.0% the error of the one-step solution
for the normal stress sum, Ady; + Adgz, is in the order of 2.2% relative to the

100-step solution.

Next, the algorithm is tested for convergence under a simple shear strain field.
The initial condition for this experiment is the final configuration that resulted
from the one-step solution of Table 2 (i.e., under cumulative normal strains of

€11 = €22 = —2.0%). From this initial condition, the control volume is then subjected
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Table 3. Convergence test for the 196-particle assembly: simple shear
(ky =kr=1x 104 units).

Cumulative incremental strain, A¢;s = Aéy; = —0.5%:
Strain increment, % Stress Ag1o = Ada
—0.50 —21.1606
—0.25 —21.1393
—0.20 n/a
—0.10 —21.1180
—-0.05 —21.1104
—0.01 —21.1028
Cumulative incremental strain, A&y = Aéy; = —1.0%:
Strain increment, % Stress Adia = Ady
—0.50 n/c
—0.25 n/c
—0.20 —40.0290
—0.10 —40.0154
—0.05 —40.0078
-0.01 —40.0002

n/a = not applicable; n/c = no convergence

to a total simple shear strain of €3 = —1.0% applied in two, four, five, 10, 20, and
100 steps. Results of the convergence study are shown in Table 3 and suggest that,
again, the algorithm is convergent in the sense that there exists a shear stress to
which the solution tends as the number of steps is increased. However, iterations
for the two- and the four-step solutions failed to provide a convergent solution on
the last load step.

Note that the strains in the order of 1% are generally considered “small” in the
macroscopic sense. However, in the microscopic level, imposed macroscopic strains
of this order could produce significant relative motion between adjacent particles,
and thus, can hardly be considered “small.” Existing numerical solutions [19-22,
26-28] often limit the macroscopic strain increments to values well below 1% in order
that the difficulty associated with numerical conditioning may be circumvented. An

important feature of the proposed model lies in its ability to provide convergent
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results even for macroscopic strain fields in the order of 0.1 to 1.0%.

Using the same initial configuration of Figure 17, the particle assembly now
experiences a complex strain path characterized by alternating isotropic compression
and simple shear. Figure 18 shows a plot of the overall shear stress &1, versus
overall tensorial shear strain € for the 196-particle assembly. The strain history
for this problem is such that the assembly is compressed isotropically by an amount
of Aqy; = A€y = —1.0% each time that the shear stress-shear strain curve
reaches a plateau. Thus, re-hardening takes place immediately after each isotropic
compression. The deformed configuration at total strains of €3 = €2 = —3% and

£12 = —4.5% are shown in Figure 19.

In a separate parametric study, Figure 20 shows that the macroscopic shear
stress-shear strain response is not significantly influenced by the assumption of
when a contact is initially formed between two previously non-overlapping particles.
Recall that for IOPT = 1, initial contact is assumed to take place at time t,4 if
contact is detected between two previously separated particles; if IOPT = 0, contact
is assumed to take place at time t, (see Box 1). Since Figure 20 shows that the
predicted results are nearly the same, either assumption may be employed in the
analysis. The use of IOPT = 0 seems to generally lead to a more stable numerical

solution.
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modes when the assembly is fully unconstrained;
particle radius = 1.0 units.

32



NORMALIZED NORMAL STRESS x E-4

60

50

40

30

20

10 +

—{—— DIRECTION 11

—O—— DIRECTION 22

0.5 1 15 2 25
NORMAL STRAIN, %
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structural anisotropy for the 58-particle assembly.
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Figure 15. Normalized overall shear stress a7,/kr
versus overall shear strain €5 for the 58-particle
assembly.
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Figure 16. Normalized overall shear stress 67,/kr
versus overall shear strain €5 for the 58-particle
assembly.
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Figure 18. Overall shear stress &7, versus overall
shear strain €;9 for the 196-particle assembly
subjected to alternating isotropic compression
and simple shear strain history.

57

8.0




P [
q )
A |

v
L

N AN

0.3

0.25

0.2

0.05

5

1

0.

0.1

Deformed configuration for the

196-particle assembly; mean particle radius

Figure 19.
0.0092 units.

58



SHEAR STRESS

—{— 10PT=

—O— IOPT=1

0.5 .0 1.5
SHEAR STRAIN, %
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IOPT=0, contact is assumed formed at t = ¢,
between two previously non-overlapping particles;
IOPT=1, contact is formed at t = t,4;.
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Chapter 3

Stress-driven Problem

5.1. Introduction

When a macroscopic point in a granular material experiences an overall stress
history, it responds according with some uniform macroscopic deformation. This
overall motion must be compatible with the movement of the individual particles
contained in the control volume. Thus, when given a stress history, the macroscopic
uniform deformation of the particle assembly and the discrete microscopic particle
motions constitute the principal unknowns. In the language of computational
plasticity, one has a stress-driven, or inverse, problem. A stress-driven problem

requires two levels of analysis:

i. micromechanical level to calculate the contact forces and, eventually, the

overall stresses o resulting from an imposed overall deformation gradient A,

il. macromechanical level to iteratively determine the uniform control volume

motion A* which exactly produces the prescribed overall stresses o*.

The strain-driven algorithm presented in Chapter 4 forms the basis of the
micromechanical level by determining the particle contact forces for a given overall

deformation of the control volume.

It is emphasized that while the formulation in this chapter admits finite motions

of the individual granules, the overall material response is based on infinitesimal
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theory, i.e., A is assumed to be ‘small.” Consequently, the present formulation
captures only the material overall response. Finite rotation and/or large deformation
of the control volume, which could be important in many boundary-value problems,
may be readily incorporated in the macroscopic formulation in a future extension
of the model.

This chapter presents alternative algorithms for solving the inverse problem
based on Newton and Newton-type methods. First, a description of the algorithm for
the solution of the stress-driven problem is presented. The remainder of the chapter
considers the issues surrounding the consistent linearization of the overall elasto-
plastic constitutive relations. In order to exactly derive the algorithmic tangent
operator, an additive decomposition of the particle motions is presented. The
implications of this decomposition on particle contact slip, contact forces, and the
overall stress are then investigated to render the derivation of the exact algorithmic
tangent. This chapter then devotes special attention to the implementational hurdles
surrounding the exact tangent operator. Finally, to circumvent these difficulties, a
secant approximation is described that retains the essential properties of the exact

description.

5.2. Algorithm for problenis with imposed overall stresses

Let &7, be the imposed overall stresses. For equilibrium, one can write the

macroscopic stress equation at time station t,4; as

, F(Ani1, Ynt1) —Opy1 =0, (5.1)
where A} ; denotes the overall displacement gradients compatible with the imposed
overall stresses &y ,;, and 1,41 represents a set of strictly micromechanical
variables. This equilibrium equation represents an extension of the functional
relation (3.29) to include the effects of the assembly’s microstructure. The physical
meaning of equation (5.1) is that the applied loads equilibrate the internal stress
which depends in a very complex manner upon the uniform control volume motion

and upon micromechanical variables such as the particle coordination numbers, the
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formation and rupture of particle contacts, and the stability of the control volume’s

microstructure.

In plane strain applications, the applied stress represents a vector with four
independent components. However, since the balance of angular momentum (3.4)
requires that the calculated overall stress be symmetric, equation (5.1) yields three

coupled nonlinear equations for each component of the applied stress:

— % —% —%x —% 7t ‘
Ontl1 = {011, 7225 012}n+1 . (5~2)
The unknown vector of the uniform motion then becomes

Ani1 = {A11, Azz, A12}iyq - (5.3)

The applied stress vector in (5.2) will be formed by instantaneously imposing the
incremental stress o | — o, at discrete time steps At = tp41 — 5. Likewise, the
internal stress & instantaneously varies following the application of the incremental

stresses.

We now denote (GExT)n+1 as the vector of applied overall stresses given by

(GEXT)n+1 = Gpy1, (5.4)

and Gyt as the vector of internal stresses given by
GINT = 0(An+1,Pn+1) - (5.5)

The condition of macroscopic stress equilibrium can then be rewritten in

residual form in terms of macroscopic quantities as

R=Gy7(Ay 1) — (GEXT)at1 =0 (5.6)

where Ay, are the roots of the nonlinear system of equations (5.1). Linearizing

the residual equation gives

~Ginr(AS)AAR = (GpxT)nsr — Gine(AL L) (5.7)
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where
_ 05 (AX.1)

Givr(AF. )=C = 5.8
TnT(Ant1) oA, (5.8)

is the tangent matrix, and A A represents the kth search direction for the solution
vector AF 4+1- Note that the matrix C in (5.8) represents the material stress-strain

matrix when the elements of A¥ 41 are small.

Applying Newton’s method, the next estimate of A} ; can be computed from
-1
At = AL, - [G’INT(Aﬁ+1)] R, (5.9)
The method is said to have converged when
IR*||/||R°|| < RTOL, (5.10)

where RTOL is a prescribed error tolerance.

Box 3 summarizes the necessary steps for solving a stress-driven problem. In
view of the two levels of analysis required to solve this type of problem, two nested
Newton iteration loops are necessary. Inclusion of the call to the micromechanical
level clarifies the central role played by the strain-driven algorithm. Note in Box 3
that the inverse algorithm is only at best as stable as the inner Newton loop for the

strain-driven algorithm.

5.3. Particle displacement decomposition

Consider the exact evaluation of the algorithmic tangent (5.8). Central to
this computation lies the complex micromechanical-macromechanical connection
between the independent particle motions and the overall control volume
deformation. The micromechanical level subjects the assembly of particles to
a prescribed macroscopic uniform motion and then allows the particles to move
in a microscopic sense to achieve equilibrium [26-28]. This section derives a
decomposition of the particle displacements to formalize this micromechanical-

macromechanical connection essential for exactly evaluating the algorithmic tangent.
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Box 3. Stress-driven algorithm.

Macromechanical level
1. Given a7, 07, and k = 0.
2. Compute: G yp(AL ).
-1
3. Ayl = ARy - [Ghyr(4s)] T R
4. Call Micromechanical level in Box 2 with Aﬁj‘_i, A,,and 7 = 0.
5.8 =13V (rrel+17g ).
6. R**! = g(Ak, ) —0or ;.
7. IF |R**!||/||R°|| < RTOL, RETURN.

8. ke—k+1and GOTO2. O

To this end, the relationship between the particle displacements and the overall

displacement gradient must first be constructed.

Recall that the dependence of the contact forces f¢ on the imposed
displacement gradient A followed directly from the initial imposition of the uniform
motion on the particle centroids. This motion causes contacting particles to either
slip, overlap, or separate creating unbalanced contact forces and acts as the initial
estimate for the Newton solution given in Box 2. The perturbed momentum balance

equations given in (4.13) as
r=Fiyr(A- X2 #£0 (5.11)

create the residual in the force vector which must be dissipated by the Newton
iteration. Thus, the initial particle displacements (i.e., the first guess of the new

particle equilibrium positions) depend solely on the uniform motion A.

The continued dependence of f¢ on the displacement gradient A follows from
the dissipation of r in (5.11) through the Newton iteration as the particles displace to

the new equilibrium configuration. The sides of the unit cell remain fixed according
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to the uniform motion of A. In other words, after the initial imposition of A, the
particle displacements to equilibrium continue to depend on A, but they also depend
on the local effects of the material’s microstructure described by the variables .
Thus, from a typical particle’s perspective, the dependency on the displacement

gradient A and the micromechanical variables 1 can be formalized as
dn+1 = dn+1(An+1’ ¢n+1) . (5-12)

This displacement relationship can Be understood from a different perspective.
Consider a densely packed control volume experiencing a small overall shearing
motion that slightly perturbs the momentum balance equations (5.11). The
constituent particles need only displace and rotate a small amount depending on
the current set of micromechanical variables 1) to reach equilibrium. Therefore, in
the limit as the magnitude of the overall motions approaches a small value, say ¢, the
uniform particle motions may accurately describe the total particle displacements,

lim  duy1 = doy1(Ang1) . (5.13)
Ans1]l—e
Since the macroscopic motion is not restricted to be vanishingly small, the particle

displacements will also depend on the microscopic variables 9, and therefore.
dn+1 = dn+l(An+13 ¢n+1) . (5'14)

This displacement relationship can be made explicit by additively decomposing
the particles’ displacement degrees of freedom into a displacement d due to the
uniform control volume motion and a microscopic displacement d describing the

particles’ equilibrium motion

dA(An+la "/’n-’rl) = aA(An+1) + &A(An+la ¢n+1) ’ (5'15)

where particle A’s point of view has been taken. Note that the microscopic

displacement d also depends on the uniform motion.

In two-dimensions, the associated displacements for particles A and B

connected by contact element ‘e’ can be written as
de=d° +d°, (5.16)
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where

dA &A ElA
64 — 0 - o4
fsxl) = Z}El v Qex)) T\ gB (0 Hex)) T ;;ﬁl : (5.17)
B
0n+1 0 0113.1,.1

Note that according to this decomposition the uniform control volume motion results
in only particle translation. The individual particle rotations result from the locally

discrete particle motion to reach equilibrium.

5.4. Displacement decomposition and particle kinematics/contact forces

This section considers the implications of the plarticle displacement
decomposition for the particle contact slip and the contact forces. It pays special
attention to the impact of the decomposition on the path of the problem at a typical

particle contact.

Consider application of the displacement decomposition (5.15) to the definition
of the contact unit normal. As seen in Chapter 2, the definition of the contact normal
is central to the kinematic description of particle contact slip. Again taking particle

A’s point of view, let the contact normal in two dimensions be

nfyy = tngs = bt /s | = fn1,n0), (5.18)

where
= XP +dP, — (X4 +diy) (5.19)
= X%+ C~lf+1 + af+1 - (XA + aﬁﬂ + ElﬁH) : (5.20)

Similarly, the contact normal after the application of the uniform macroscopic

motion is given by

nﬁ =n; = G /|6, (5.21)
where
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Li=XB4adb,, —(XA+d2,). (5.22)
The normal indentation é can be written as
bns1 = 14+ = [l (5.23)

where 4 and v denote the radius of particle A and B respectively.

The definitions of n} +1 and nZ may be used to segregate the total slip
increment A« into slip due to the uniform control volume motion A+; and slip

due to the particle equilibrium motion A~y;
Ay = Avyq + Av;. (5.24)

Recall that the total slip increment is written as

Ay = AGACTA 4 A9BCrB (5.25)
where
AGAC = AG° — (02, — 02, (5.26)
AGBC = A9C — (62, - 6B), (5.27)
and
ABY =sin"Y(e3 - nd x nd,)). (5.28)

Incorporation of nﬁ 41 and nﬁ into these equations leads naturally to the following

definitions:
Avs = AOACrA + AOBCrB Avi = AOACr4 + A0BCrE
AGEC = AGS AOHC = NS — (02, — 02); (5.29)
AOFC = AGS A0EC = A0F — (05, - 62);
AGS =sin~!(e3 - ny X 1), AGS = sin™(e3 - ni X Mnt1).

It is important to note that equations (5.24) and (5.29) only redefine the
definition of the total slip Ay in terms of the displacement decomposition. The path

of the problem remains unaltered in the sense that the solution moves from time
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station t, to t,+1 without updating the path dependent variables at an intermediate
station, say, t;. For example, the contact plastic slip is defined for the entire

increment At = tp41 — i, as

|ff| — an + frtan g
where
fE = (fr)n + HekrAy. (5.31)

The loading/unloading conditions have not been used to compute intermediate
values such as A”/ﬁ and A'yg. Using the displacement decomposition as the basis
for intermediate nonconverged states appears questionable for a problem which,
physically, is path-dependent [37]. If unloading of a contact element occurs during
the Newton iteration process, each new iteration should start from the converged

configuration d,, and not from an intermediate configuration like, say, dj.

Likewise, it is important to note that loading/unloading conditions are not
employed to derive an intermediate force resulting from the uniform motion, say
(fr)a, and a remainder force, say (fr)s. The displacement decomposition does not

result in a decomposition in the contact forces such as

(fr)n+1 # (fr)a(d) + (fr)a(d, d). (5.32)

Such an application of the displacement decomposition would erroneously change

the path of the problem from

tn fl‘iﬁ tnt1 (5.33)
to a new path described by
tn ELN ts ELN tnti, (5.34)

where }i"—ti means that the force fr41 is updated from configuration at ¢, to t,41.
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5.5. Displacement decomposition and the macroscopic stresses

Now consider the implications of the displacement decomposition on the
calculated stress. In Section 3.4, the initial description of the internal stress was
simply

Ont+1 = opt+1(A). (5.35)

With the inclusion of the micromechanical variables 4, this expression then became
Ontl = &n+1(A, "»b) . (536)

A thorough examination of the overall stress from a different perspective leads to
a more precise expression for the dependency of the stress. The expression for the
stress (3.12) shows a dependency on the particle contact forces and the location of

the particle centroid,

o =ao(F(d),d). (5.37)
With the displacement decomposition, the contact forces F may be written as
F = F(d,d). (5.38)

Thus, the calculated stress can be then viewed as a fundamental function of the

uniform and equilibrium displacements
Fns1 = Ong1(d, d). (5.39)

This functional relationship can be reconciled with equation (5.36) by substituting

the displacement decomposition to yield
Ont1 = &n+1(£l(A),&(A, ¥)). (5.40)

Note that equation (5.38) can be easily demonstrated by considering the

expression for the tangential contact force

(fT)nt1 = (fT)n + Hekr (A — AAP). (5.41)
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Substituting (5.24), (5.30), and (5.31) yields

H.k . .
(fr)ns1 = 7 [H'(Aa — Aga) — sign(-)an + sign(") fy tan 9|
Hkr+ H (5.42)
H' '
+ i+ H (fT)n

where (-) = (fr)n + HekrAy. From (5.29), it follows that Ay; = Avz(d) and
Av; = Av;(d, ;i), and therefore

(fr)ns1 = fr(d, d) (5.43)

which leads directly to equation (5.38).

3.6. Exact algorithmic tangent operator and concentration tensor

Now, with the expression (5.39) for the stress, an exact expression for the
tangent operator can be derived. Employing the chain rule on the calculated stress
o gives (dropping the subscripts n 4+ 1 and superscripts k)

05(d,d) & 8d  9& dd

4 = ——m = == A i ° .
Ginr(A) = —7~ 5394 " 3394 (5.44)

The derivatives of the stress & can be explicitly derived from (3.12) as

80,] (3 fe alx  afg , 0 )
= 1% 4 fo L 12 5.45
22 il 8dk+6dk + ’adk (5.45)

95i; <afa o aalq are | aza)
-2 =1 5.46
ad, *° 2___: ddg T i Bdk adL i ad (5:46)

Appendix D contains a complete discussion of these force derivatives.

The displacement derivatives in equation (5.44) can be summarized in terms

of the displacement decomposition as
od _o0a , di
0A 0A  0A°
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Taking the point of view of particle A, the first derivative on the right-hand side

can be found from

dd=4.-X2. (5.48)
The derivative can be written as
~A Xf1 0 X{l
%ﬁiz =0 X3 Xx{ (5.49)
0 0 0

Equation (5.47) represents the change in the total particle motion with
respect to the change in the overall motion of the control volume — the so-called

‘concentration tensor’ [23-28,38].

The exact evaluation of the concentration tensor requires explicitly extending
the displacement decomposition into the micromechanical level residual » which can

be written as

r = Finr(dp41) =0 (5.50)
= Fiyr(d, d) (5.51)
el
=J r@, a. (5.52)
e=1 '
The first variation of this expression yields
o sa+ Psa=o. (5.53)
od ad

where § denotes a small variation. Since the displacements d and d depend on the

macroscopic motion A, use of the chain rule on (5.53) gives

or 04  or 0d
|:5§ 'aj + 5‘2 -ﬂ:| 6A =0. (5.54)

It follows that for an arbitrary § A

9_19_3+?13_3_
od 0A = od 0A
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Substituting equation (5.52) into (5.55) yields an exact expression for the

concentration tensor as

od .- 0d
— = K 1K 5.56
0A 0A’ ( )
where
. U : U of°
K = ke = ~ (557)
e=1 e=1 ade
Nel Nel .
R .. afe
K+ K= e + k) = — . 5.58
U+k)=Ugz (558)

The element contributions to the matrices K and K can be found in Appendix D.
The definition of the algorithmic tangent matrix which can now be written as
05 O . _1:\] 0d
! =|—=-—=(1+K'K)|+—. 5.59
Gint(A) 53 6d(+ ) e (5.59)
As seen from Box 3, the algorithmic tangent will be evaluated after the

micromechanical level has reached convergence for the given macroscopic motion.

The numerical simulations of Section 4.4 showed that when a control volume
with an initially collapsible structure experiences a shearing deformation beyond
its ability to compact, particles separated into isolated clusters. Numerically, this
phenomenon manifested itself as zeros on the diagonal of the factorized microscopic
tangent operator. These zeros are not operated upon during the back substitution
process. The stress-driven problem does not preclude such a phenomenon. In
fact, such a ‘strain softening’ effect could have disastrous implications for the exact
evaluation of the tangent and in particular the evaluation of K~1. If K becomes
singular, the zeros on the diagonal cannot be ignored and will make the calculation

of the exact algorithmic tangent intractable.

In addition, the complexity of the exact algorithmic tangent should be noted.
Equation (5.59) requires the considerable effort to evaluate the derivatives contained
in K and K and also the explicit computation of K~!. The matrices k¢ and k°
represent contact element contributions and therefore must be computed for every

particle contact in the control volume. Therefore, the intensive computational and
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assembly effort expended in the exact evaluation of K, K1, and K also represents
a significant difficulty engendered with the implementation of the exact algorithmic

tangent operator.

5.7. Discretized Newton method

Although Newton’s method is theoretically attractive for the stress-driven
problem, it is expensive and difficult (if not impossible) to implement. Each iteration
not only requires the calculation of the components of the macroscopic residual but
also the components of the algorithmic tangent. As Section 3.5 and Appendix D
show, the partial derivatives in the tangent matrix do not have a simple functional
form. The most direct approach to circumventing the explicit computation of these
derivatives is simply to approximate the algorithmic tangent by difference quotients.
In what follows, two such approximations for the general stress-driven problem in

three dimensions are considered.

Two commonly used difference approximations to the algorithmic tangent

operator take the form

OR;(A) . 1 1 B .
vl LG (4 +hijet) - Ri(a)] (5.60)
and
ORi(A) . 1 | j j-1
0A;  hy _R" (AJ’];hikek) —Ri(A+ ;hikek>] ,  (5.61)

where h;; denotes discretization parameters, and e’ represents the jth coordinate
vector. The residual R and parameter vector h have the mapping R C R¢ and
h C R x R respectively.

Let ®(A,h) denote the difference approximations (5.60) and (5.61) with the

property that whenever algorithmic tangent exists, then
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Thus, the next estimate of A}, can be computed from
-1
Akt = b, - (oAb, mh)]| R (5.63)

This iteration scheme is the so-called ‘discretized-Newton’ method and represents a
special case of the general secant method. Note that the discretization parameters

h vary with each iteration.

Now consider several possible ways of choosing h. If h;; = h; such that
Rt = AF-1_ AF (5.64)

the difference approximation (5.60) yields

= [ (et ete) - m(a)]
7375 [R( 4 + hiet) - R(Ak)” : (5.65)

and the approximation (5.61) gives

81;;Akk) _ [hi’f [R(a*+htel) -R(4Y)] ...,
6 5
Z]-E[R(Ak -{-;hfej) _R(Ak +]Z=;hfej)]}. (5.66)

The auxiliary points A¥ + (A;?"l - A;?)ej and AF + ijl(Af"l — AF)e' in these
difference approximations denote the points in ®® used to approximate the tangent
Tvr(Af1)
INT\**n+41/"

The methods defined by (5.65) and (5.66) retain the essential properties of
Newton’s method, and have satisfactory local convergence theorems [34]. An
important property of the method defined by (5.63) is that it exhibits the same
quadratic convergence as Newton’s method while not requiring any derivatives of

the residual function R.

Note that for a plane strain formulation, the approximation defined by (5.65)

requires three function evaluations of the macroscopic residual R. However, since
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R(Ak’l) is available from the previous iteration, the approximation (5.66) requires
only two new evaluations of R. Thus, with only two evaluations of the macroscopic
residual R, one can circamvent the intensive calculations for the exact algorithmic

tangent.

5.8. Numerical simulations

This section presents the results of two-dimensional plane-strain simulations
on granular assemblies composed of either regular or random initial packing of
circular disks. It also demonstrates some fundamental properties of our numerical
model such as quadratic convergence of the discretized-Newton approximation, the
invariance of the model under rigid body rotation of the control volume, and the
prediction of the onset of localization, as well as reports the numerical difficulties

encountered during the simulation process.

Unless otherwise stated, Table 4 defines the model parameters used in all
analyses for the macroscopic level and the microscopic level. The overall stresses
have been calculated using a volume equal to the initial cross sectional area Ag
times a unit thickness. The error tolerances RTOL and rtol used in (4.8) and (5.10)
respectively ensure that the iteration has sufficiently converged, thus minimizing
the propagation of numerical errors. For the examples considered throughout this
section, the discretized Newton approximation (5.66) has been employed. The same

results can be obtained with the approximation (5.65).

Sixty four-particle closest packing assembly

The initial granular assembly configuration is shown in Figure 21. In this
example, the assembly consists of sixty four uniform circular particles of radius
7 = 1.0 units arranged in a closest packed configuration. The same configuration
can be obtained by rotating the control volume by 60°. The particle on the lower left-
hand corner has been fixed against translation and rotation to arrest the zero energy

modes present in the assembly. The two initial auxiliary points A° and A! are

75




Table 4. Model parameters.

Macromechanical level
Error tolerance: RTOL = 1.0 x 10™7.
Micromechanical level
Error tolerance: rtol = 1.0 x 1078,
Normal spring stiffness: ky = 1.0 x 10%.
Tangential spring stiffness: k7 = 1.0 x 10%.
Particle friction angle: ¢ = 30°.
Particle contact cohesion: ag = 0.
Contact hardening parameter: H' = 100.

Ramp function parameter: € = 0.10.

arbitrarily chosen as {-0.02, f0.02,0.0}t and {—0.0275, —0.0275, —5.5 x 10_6}t,
respectively, to launch the discretized Newton approximation (5.66). The converged
algorithmic tangent from the previous time step is employed as the initial estimate
of the tangent operator for each new time step. Otherwise, these examples follow
the Newton algorithm outlined in Box 3, i.e., update the algorithmic tangent each

iteration.

The particle assembly experiences a stress history consisting of one increment

of isotropic compression Ag}; = AG}, = -200%* Ag = —0.9021, AG}, =
Agj, = 0.0, followed by 35 increments of shear stress A&}, =
Agy, = 0.0; Ady, = Adj, = —10.0%x Ag = —0.0451. The plot of the normalized

overall shear stress 6], /kr versus the uniform shear motion A;2 appears in Figure 22
and shows the stress point reaching a yield plateau. At this plateau, the localization
function (3.41) becomes negative at the last time step indicating that the localization

criterion is satisfied at an intermediate point between the last two time steps. The
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deformed configuration at the end of the loading history appears in Figure 23.

The same analysis was rerun with a shear stress loading in the opposite
direction: Ag}, = 10.0% Ag = 0.0451. The same results for the final configuration,
contact forces, and uniform motion were obtained under the appropriate rotation.
Thus, the model is invariant under rigid body rotations and can capture the isotropy

of the assembly packing.

Fifty eight-particle irregular assembly

The initial control volume configuration for this example is shown in Figure 12.
This control volume represents a first step towards the general analysis of randomly
arranged and randomly sized particles. This repeating cell configuration isolates
the effect of a random arrangement of particles on the overall response of the
material and the performance of our model. All particles in the control volume
have a radius r = 1.0 units. For these experiments, the two auxiliary points
are arbitrarily chosen to be A® and A to be {—0.002, —0.002, —1.0 x 10~° }.t and
{-0.00175, —0.00174, —2.55 x 10‘5}t , Tespectively.

For the examples considered here, the control volume experiences six
increments of isotropic compression. The first two increments consist of Ag}; =
Ay, = 2000 x Ay = —0.7842, and the next four increments consist of
A}, = Agy, = -—900.0 x Ap = —3.5291. The isotropic compression produces
prestressing effects on the elastic springs and prevents the particle contacts from
breaking during the shearing process. The compression may be thought of as

stabilizing the particles which may initially lie in an unstable configuration.

The particle assembly now experiences a shear stress loading in increments of
A}, = —40.0 x Ag = —0.1568 for different values of the hardening parameter
H'. Figure 24 shows the variation of the normalized shear stress &},/kr with the
shear motion Ajs for each choice of H'. The straight line portions of each response
represent the elastic stretching of the tangential springs. As H' becomes smaller,

the overall response approaches an elastic-perfectly plastic behavior.

With the same initial configuration and a hardening parameter H' = 100.0, the
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control volume is subjected to a cyclic shear loading consisting of 80 increments of
Ag}, = —10.0% Ay = —0.0392; followed by 180 increments of Ay, = 10.0%Ap =
0.0392; and finally 191 increments consisting of Ag}, = —10.0 ¥ Ap = —0.0392.
Figure 25 shows a plot of the normalized overall shear stress response versus the
uniform shear motion Ajs. This overall response clearly indicates a hardening
response resulting from the incorporation of particle contact hardening. Note that
localization does not occur during any stage of loading, unloading, or reloading. The
plot of the localization function near the region of the function minima and at the

end of the first loading appears in Figure 26.

One hundred ninety six-particle random assembly

The initial positions of the particles are shown in Figure 17. For the examples
in this section, the two auxiliary points are chosen to be {—0.02, ——0.02,0.0}t
and {—0.0275, —0.0275, —-5.5 % 10"6}t , respectively. To ensure an initially stable
initial configuration and that the particles indeed touch at contact points the

control volume was isotropically compressed to an initial macroscopic stress of

The numerical algorithm is next tested for convergence. Following the Newton
dlgorithm in Box 3, the control volume is compressed with an additional isotropic
stress of AG]; = Ay, = —5.0*A0 = —75.9668 applied in one, two, four, 10, 20, and
50 increments. Table 5 shows the predicted incremental macroscopic control volume
motions AAj; and AAg, at cumulative incremental normal stresses of Ag}; =
AGy, = —2.5x%Ap = —37.9984 and A5}, = Ag3, = —5.0x Ag = —75.9968.
Note that the normal uniform motions of the control volume are not equal due to
anisotropy effects, and a non-zero macroscopic shear motion AAjs = AAg; is also
produced by the isotropic stress history. The results shown in Table 5 demonstrate
that the inverse algorithm is convergent under an isotropic stress field and that for
a volumetric stress of Ag, = Ad}; + Ady, = —10.0 x Ag = —151.9936 the error of
the one-step solution for the normal motion sum, AAj; + AAgg, is in the order of
1.0% relative to the 50-step solution.

Table 5 also shows the convergence profile of the one-step solution. This profile
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Table 5. Convergence test for the 196-particle assembly: isotropic compression
(ky = kr =1 x 10% units).

Cumulative incremental stress, Adg1; = Adgy = —2.5 % Ag = —37.9984 :
Stress increment AA, % AAg, %
-5.00 n/a n/a
-2.50 -0.31043 -0.34583
-1.00 n/a n/a
-0.50 -0.31160 -0.34810
-0.25 -0.31176 -0.34841
-0.10 -0.31186 -0.34859

Cumulative incremental stress, Agy; = Adyy = —5.0 x Ag = —75.9968 :
Stress increment AAq1, % AAg, %
-5.00 -0.57729 -0.64472
-2.50 -0.57976 -0.64837
-1.00 -0.58129 -0.65089
-0.50 -0.58184 -0.65176
-0.25 -0.58213 -0.65220
-0.10 -0.58230 -0.65246

n/a = not applicable

Convergence profile for stress increment, Agy; = Adgy = —5.0 x Ag = —75.9968:

Iteration Residual
7.0710678
1.2514259
1.6524780 x 101
4.0669135 x 10~3
2.0566571 x 10~°
3.0604956 x 10~°

O O W N —

typifies the performance of the discretized Newton method used for all numerical
simulations presented thus far. The approximation (5.66) to the algorithmic tangent
retains the characteristic quadratic rate of convergence typical of a Newton method
when sufficiently close to the solution. Note that for the last two iterations the
elements of the discretization parameters h* become close to zero. Thus, as shown

in [34], the difference approximation to the algorithmic tangent satisfies the property
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(5.62) and displays the essential characteristics of the Newton method.

Next, the algorithm is tested for convergence under a shear stress field.
However, the Newton method presented in Box 3 is modified to streamline
the efficiency of the macroscopic level. Recognizing that the majority of the
computational expense lies in each call to the microscopic level, the previous
time step’s converged tangent is used for the first two iterations of the new time
step to establish the auxiliary points A° and Al. Also, the tangent operator
is updated every other iteration instead of at every iteration. When using the
approximation (5.65), this modification utilizes a minimum of three fewer calls to
the micromechanical level as outlined in Box 3 for every two iterations. When

employing equation (5.66), the modification uses one fewer call for every iteration.

For this convergence test, the final configuration resulting from the one-step
solution of Table 5 (i.e., under a cumulative normal stress of 67; = 5, = —10.0%
Ap = —151.9936) is used as the initial configuration. From this initial condition, the
control volume experiences a total shear stress of Agj, = —3.0 % Ag = —45.5981
applied in two, three, four, six, 12, and 30 steps. Table 6 shows the results of the
convergence study and suggests that the algorithm is convergent in the sense that
there exists a macroscopic shear motion to which the solution tends as the number
of steps increases. Iterations for the two-step and six-step solutions failed to provide
a convergent solution because the micromechanical level did not find an equilibrium
configuration at the start of a time step. Table 6 also gives the convergence profile
for the two-step solution. This profile again displays rapid convergence in the
neighborhood of the solution but with less computational effort than the Newton
method in Box 3. |

Recall that the previous time step’s tangent operator is employed for the first
iteration of the next time step. In terms of the discretized Newton method described
in Box 3, this estimate provides the auxiliary point A! which in turn is used with A°
to approximate the algorithmic tangent operator according to either (5.65) or (5.66).
If the previous step’s converged tangent operator produces a poor approximation
of the variation of the overall motion with respect to the macroscopic stress for

the new time step, the micromechanical level may not converge to an equilibrium
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Table 6. Convergence test for the 196-particle assembly: shear
(ky =kp=1x 10*units).

Cumulative incremental stress, Ag1o = —1.5 % Ag = —22.7990 :

Stress increment AAq, %

-1.50 -0.26453

-1.00 n/a

-0.75 -0.26434

-0.50 -0.26429

-0.25 -0.26425

-0.10 -0.26423
Cumulative incremental stress, Ago = —3.0 ¥ A9 = —45.5981 :

Stress increment AAq, %

-1.50 n/c

-1.00 -0.62574

-0.75 -0.62614

-0.50 n/c

-0.25 -0.62698

-0.10 _ -0.62727

n/a = not applicable; n/c = no convergence

Convergence profile for stress increment, Agiy = —1.5 x Ag = —22.7990 :

Iteration Residual

1 1.5000000

2 9.6489208 x 102

3 1.2397293 x 102

4 4.0669135 x 10~3

5 1.5293010 x 104

6 1.1355753 x 10~ 11

configuration. Figure 27 shows the highly non-linear relationship between the shear
stress 5}, and the overall motion A;; for the smallest stress increment of the shear
convergence test. This plot also contains the data from the non-converged six-step
experiment. The initial estimate of the tangent operator yields a uniform motion
which when combined with the converged particle configuration of the previous

time step causes the micromechanical level not to converge. Thus, it is important
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to reiterate that whether the exact tangent operator or some approximation is
employed, the inverse algorithm is at best as stable as the micromechanical level

strain driven algorithm.

Using the same initial configuration and tangent updating modification as in
the shear convergence test, the particle assembly now experiences a complex stress
history consisting of alternating shear stress Ag}, = —0.10 * 4p = —1.5199
and isotropic compression. Figure 28 shows the plot of the overall shear stress
1, versus the macroscopic shear motion Aj;. When the micromechanical level no
longer converges, the control volume experiences two steps of isotropic compression
Acy; = Aoy, = -=5.0%Ag = —75.9968. Figure 29 shows the variation of
the localization function minima with the shear stress. Despite the stress point
reaching a yield plateau during the second shear loading, the localization function
does not become zero or negative during this experiment. The deformed control

volume configuration at the end of this test appears in Figure 30.
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Figure 21. Initial configuration for the 64-particle
83

closest packing control volume; particle radius

1.0 units.




NORMALIZED SHEAR STRESS x E-4

0.0 0.2 0.4 0.6 0.8 1.0
A(1,2), %

Figure 22. Normalized overall shear stress o3,/ k1
versus overall shear motion Aj2 showing formation
of a yield plateau.
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Figure 23. Deformed configuration of the 64-
particle closest packed control volume at the end
of the shear loading of Ag], = —10.0* Ay =
—151.9936; particle radius = 1.0 units.
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NORMALIZED SHEAR STRESS x E-4

—0— Q=0.015 —<"— Q=0.01 —0— =0.0075

—&— Elastic —— Q=0.1 —4&— Q=005 —®— Q=0.025

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
A(1,2), %
Figure 24. Normalized overall shear stress 61,/ kr

versus overall shear motion Ajs showing the
effects of the moduli ratio @ = H'/kr.
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NORMALIZED SHEAR STRESS x E-4

A(1,2), %

Figure 25. Cyclic testing of the 58-particle
control volume showing the hysteretic response of
the normalized overall shear stress 67,/kr versus
overall shear motion Ajs.
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Figure 26. Localization function versus orienta-
tion of the plane of discontinuity, 8, at the end of
the first loading in the cyclic test.
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NORMALIZED SHEAR STRESS x E-4

~——— 30 Step Solution

-2 "0 - Six Step Solution

2.012 2.014 2.016 2.018 2.020
A(1,1), %
Figure 27. Normalized overall shear stress

&1,/ kT versus overall normal motion A;; showing
nonlinear expansion in the z-direction during
shear loading.
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SHEAR STRESS

0.0 0.5 1.0 15 2.0
A(1,2), %

Figure 28. Overall shear stress 57, versus overall
shear motion Ajy for shear loading followed by
isotropic loading.
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Figure 30. Deformed configuration for the
196-particle assembly; mean particle radius =

0.0092 units.
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Chapter 6

Elastic Contact Laws and Validation

6.1. Introduction

In 1882, Heinrich Hertz introduced the basic premise used in contact stress
theory — two bodies in contact can each be regarded as an elastic half space in the
proximity of the contact region. The highly concentrated contact stresses can then
be treated separately from the general distribution of existing stresses which arise
from the shape of the bodies and the manner in which they are supported. Hertz’s
contact theory relies upon a set of basic assumptions which may be summarized as

follows:

2. the surfaces are continuous and non-conforming: the significant dimension
of the contact area a is much less than the the relative radius of curvature
R where 1/R = 1/Ry1 + 1/Ry and R; and Ry represent the radii of the
bodies in contact (i.e., a < R);

2t. the strains are small;

111. each solid is considered as an elastic half-space: a K R1, a K Rz, a K1
where [ denotes the dimension of the bodies in depth;

1v. the surfaces are frictionless.

Assumption () ensures that the surfaces just beyond the contact region approximate
a plane surface of a half-space. Assumption (i¢) guarantees that the strains within
the contact region remain within the realm of the theory of elasticity. Assumption

(73t) ensures that the stress field calculated on the basis of a infinite solid will not
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be significantly influenced by the location of its boundaries to the highly stressed
region. Finally, assumption (iv) is made to guarantee that only a normal pressure

is transmitted between the contacting bodies.

Hertz’s contact theory will be employed to derive contact laws for the
normal and tangential interaction between two infinitely long cylinders. A secant
approximation will be used to transform Hertz ’s nonlinear contact expressions into a
linear contact law dependent upon the material properties of the contacting bodies.
The resulting contact stiffnesses ky and k7 will then be substituted in the strain-
driven or stress-driven algorithm. The ability of these algorithms to predict typical
soil behavior will be verified by subjecting a 196-particle control volume to a specific
loading history. The results of the numerical simulation will then be compared with

similar plane strain experimental data.

6.2. Cylindrical bodies in contact: normal interaction

Consider two cylindrical bodies lying parallel to their axes and pressed together
by a force P as shown in Figure 31. The bodies make contact over a long strip of
width 2a parallel to the y-axis. The center of cylinder 1 and the center of cylinder 2
move towards the ¢ — y plane by displacements 6; and &, respectively. If the
cylinders did not deform, their profiles would overlap as shown in the insert of
Figure 31. The displacements §; and 82 which are measured positive into each
cylinder may be found as the limiting case of an elliptical contact area where the
major axis of contact corresponds to the long axis of the cylinders and becomes large
compared with the semi-contact width a as shown in Mindlin [39]. The contact of

two long cylindrical bodies then becomes two-dimensional in nature.

However, the cylinder contact problem may be simplified from the outset by
employing assumptions 7 — ¢v in the manner of Poritsky [40]. Hertz’s assumptions
¢ — 1v neglect the curvature of the cylinder’s boundaries except near the contact
region such that the spreading of the stress takes place in the same manner as in a

semi-infinite solid. The two-dimensional plane strain contact configuration can then
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Figure 31. Cylindrical bodies in contact under a normal load P.

be transformed into an equivalent half-space loaded by the Hertz contact pressure

distribution. The distribution of pressure can be written as

p(@) = 2y (@t —a2), o] < o (6.1)
where
a? = %; (6.2)
Tt (63)
‘E.l'; _ 1 ;?lv% + 1;21;% ; (6.4)

and where P represents the compressive force between the cylinders per unit axial
length, R is the relative radius of curvature, and E* denotes the composite modulus
of the cylinders in which v, and E, represent the Poisson’s ratio and Young’s

modulus respectively of cylinder n.




Now, consider cylinder 2 in Figure 31. For z > 0, the cylinder may be replaced
by a semi-infinite solid loaded by the pressure distribution (6.1). The semi-infinite
solid retains the cylinder’s Poisson’s ratio vo and Young’s modulus E> . Following
Poritsky [40], the normal deflection 62(z) of the half space along z = 0 in the

direction of the pressure can be written as

65(2) = — L — %) 1—0)213/%\/ "ot |z — s|ds . (6.5)

wa?

Evaluation of this integral yields

P(1—v2) [z2
D) [ 16 o] < a 69
—2 :
—Q%;le[nw+2—ig]+02, x> a;

52(.’17) =

[a—

where

wzé[w-i— w2——a2}. (6.7)

The constants C; and C, can be evaluated by considering the displacement 62
relative to some reference point where 8 can be considered vanishingly small.
Ideally, the displacement would be evaluated relative to the region at infinity. In
the case of a finite object such as a cylinder, however, the displacement must be
evaluated relative to some reference point in the interior of the cylinder. As seen
from the logarithmic term in equation (6.6), the displacement increases slowly with
distance causing the overall displacement not to be too sensitive of the choice of the
reference point. Hertz’s assumptions, namely that a < Rs, guide the choice of the

reference point as equal to the radius of cylinder 2. The constants C; and C then

become
2R 1
C1 =—1-n—:1—2-—§; (6.8)
_4P(1—vd) [, 2R,
Cy = E In —| - | (6.9)

Now, the shortening of the branch vector connecting the centers of cylinders 1 and
2 can be evaluated. As seen from the particle kinematics developed in Chapter 2,

the compression of the contact branch vector is of special interest for developing the
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particle contact constitutive relationship. The shortening of the branch vector lying
within cylinder 2 can be evaluated from equation (6.6) to yield:
4P(1—-v3) [, 2Ry | 1
= ( 'Uz) [ln 2 -+ _} .
7I‘E2

a 2
A similar expression can be obtained for the compression of the branch vector within

82(0)

(6.10)

cylinder 1.

~ The total compression § of the two cylinders equals the summation of their
individual displacements é; and é; as seen in Figure 31. The total compression of

the branch vector can be written as

5(0) = 81(0) + 65(0) (6.11)
a2
_APA v [ 2R 2R ] (6.12)
7 FE a a

This expression for the relative approach of the centers of two infinitely long cylinders
represents a nonlinear relation in terms of the contact force per unit length P. The
nonlinearity arises from the dependence of the semi-contact width a on the contact

force P as seen in equation (6.2).

6.3. Cylindrical bodies in contact: tangential interaction

When considering a tangentially loaded point of contact, a distinction must
be made between slip and sliding. Slip occurs when there is a relative tangential
displacement over only a portion of the contact surface. The region within which no
relative tangential displacement occurs is termed the ‘stick’ region. In contrast,
sliding occurs when tangential force reaches a critical value to cause relative
displacement over the whole contact surface. The particular case considered here
will be elastic bodies in contact under the condition of no slip. When the tangential
traction does not exceed the limiting value, the no slip condition requires that all

surface points within the ‘stick’ region undergo the same tangential displacement.

The specific case of interest consists of the compression of two infinitely long

cylinders by a normal force P per axial length and the subsequent application of a
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Figure 32. Tangential displacements of two contacting cylinders.

tangential force T per unit length. The Hertz contact theory of the previous section
gives the pressure distribution arising from the force P, the semi-contact width a,
and the total normal displacement § of the cylinders. The complete contact width
—a < z < a represents the ‘stick’ area where no slip occurs. Figure 32 shows
the tangential force T' at the contact interface and the resulting tangential, elastic
displacements of the contact strip. The tangential displacements v; and v; represent
the tangential displacement of the center of cylinder 1 and 2 respectively. Note that

the center of each cylinder has been considered distant from the loaded region.

Mindlin [39] recognized that if no slip occurs at the contact surface, no change
in the normal component of traction occurs across the surface. Thus, when the
bodies have the same elastic properties, the shape and size of the contact area
and the distribution of the normal pressure will be independent of the tangential
force [41]. The profiles of the two contacting surfaces fix the shape and size of the
contact area. The stresses and deformations resulting from a normal pressure and

the tangential traction will be independent of each other, and superposition can be
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employed to find the resultant stress.

Consider two cylinders 1 and 2 in contact over a region |z| < a@ on z = 0 and

subject to a tangential traction given by

2T
t(z) = —= 2 g2 < a. 6.13
(2) = —54/(a m),' |lz| < a (6.13)
Again, the assumptions of Hertz can be employed to transform the problem into an

elastic half space loaded by the tangential traction (6.13) over |z| < a.

The tangential displacements 4; and 72 can be evaluated by employing their
basic analogy with the normal displacements §; and é;. Under the action of identical
distributions of tangential and normal tractions t(z) and p(z), the tangential
displacements v; and 7, analogous with the normal displacements é6; and é;. For
example, the normal tractions given in (6.1) along the plane boundary of the
half space can be replaced by the tangential tractions (6.13), and the normal
displacements &, and é; found in the previous section can be replaced by the
tangential displacements 4; and 7, respectively. The analogy assumes that the

same reference point has been used to evaluate the constants.

By employing the normal-tangential analogy, the solution for the relative
approach of the centers of the cylinders given in equation (6.12) can be employed

to write the total tangential displacement 7 of the centers of the cylinders as

7(0) = 71(0) — 72(0) (6.14)
_ 4T(;j'?‘” ) (ln 2? +1n 252 + 1) . (6.15)

Note that since the cylinders experience mutually equal and opposite tangential

tractions, their displacements v2(0) and ~;(0) in (6.14) will be of opposite signs.

Mindlin [39] considered the general case of a normal and tangential forces
applied across an elliptic contact surface of a pair of elastic bodies. For example,
the solution of the tangential displacements for an elliptical contact assuming no

slip is given by

T v
1=z K - —(K - E) (6.16)
k2 =1—a%/l?, (6.17)
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and G denotes the shear modulus, K and E are complete elliptic integrals of the
first and second kind, respectively, and £ is the axial length of the contact area. The
contact stresses for the two-dimensional case of contact between two cylinders may
be obtained from these solutions as a limiting case by allowing the contact area to
become infinitely long along the long axis of the cylinders. The resulting relations
for the normal and tangential displacements are then given by equations (6.12) and
(6.15).

6.4. Linearization of the contact laws

The contact laws for the normal and tangential interaction of long cylindrical
bodies given by equations (6.12) and (6.15) represent nonlinear relationships between
the contact force and displacement. The nonlinearity arises from the displacement’s
logarithmic variation with the normal contact force P. Simplified expressions for

the normal and tangential contact laws can be derived with a secant approximation.

Consider minimum and maximum normal contact forces P, and Ppgp. The
slope of the line connecting these two points on the nonlinear contact laws given in
equations (6.12) and (6.15) defines the secant approximation. For choosing a value
of the minimum normal contact force, the condition of incipient contact requires
Prin = 0. Two criterion guide the choice of the maximum normal contact force
Praz. First, the Hertz assumptions 7—iv demand that Pp,s satisfy the requirements
of small strain, namely a < R. Second, the accuracy of the secant approximation
demands that P, be similar to the actual maximum normal force between the
two cylindrical bodies. With Ppi, = 0 and the appropriate choice for P,z that
satisfies these criterion, the secant approximation to the Hertzian contact laws given
in equations (6.12) and (6.15) take the form

P =kyé , (6.18)
T = kry (6.19)

where ky and k7 denote the slopes of the normal and tangential linear relations,

respectively. Physically, ky and kr may be interpreted as linear normal and
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tangential contact spring constants.

Consider expressions for the normal and tangential contact stiffnesses ky and

k7. The normal Hertzian contact law (6.12) repeated here for convenience as

4(1 — v?) [ln Ri{Rym E* + 1] p

50 =—7% 9RP

(6.20)

where the semi-contact width a (6.2) has been employed. Substituting the minimum
and maximum normal forces (0, Ppqz) into this expression defines the slope of the

normal contact approximation and gives

nE RiRonE* 17
_ , 21
AT [m 2RPras | 1] (6.21)
Thus, the normal secant approximation (6.18) can be written as
TFE RiRowE* -1
P= 1 1 6. 6.22
i1 %) [n 2RPrar } ) (6.22)
kv

In a similar manner, the secant approximation to the Hertzian tangential law can

be written as

mE RiRyrE* 17
T= 1 1| 4. - (6.23
(1 —v?) [n RDPrmay | ] 7 (6:23)
kr

Note that the normal and tangential contact stiffnesses are equal and depend upon

the material properties and radii of the contacting cylinders.

Figure 33 contains a comparison of the nonlinear Hertz contact law and its
secant approximation (6.22) for similar cylinders. The cylinders possess identical
material and geometric properties. The basis of the comparison consists of the
nondimensionalized contact force P/(kR;) and the normal indentation é/R; where
k = 7E/4(1 —v?) and Ry = Ry = 1.0 consistent units implied. The .range of the
secant approximation has been restricted to the region where 0 < P/k < 1/625.
In general, over the region of interest the linearized contact law provides a good

approximation to the Hertzian law.
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Expressions for the contact forces F,,+1 discussed in Chapter 2 can be obtained
from the discretization of the linearized contact laws (6.22)-(6.23). Assume that at
time ¢, the contacting cylinders A and B — particles in plane strain — have well
defined centroids #4 and 8. The contact force P between two cylinders can now
represent the normal component of the contact force fy at time t,4;. The normal

contact law can now be written in incremental form as

f'n+1 = ”He(6n+1)kN5n+1 (6.24)

where the ramp function H¢(8,41) is as defined in Chapter 2, the overlap ép41
equals the shortening of the branch vector §(0), and ky denotes the normal contact
stiffness as defined by (6.21).

For the tangential interaction, the contact stiffness in (6.23) defines the elastic
tangential force. When the contact mode is ‘stick,’” the tangential component of the

contact force fr at time t,41 can be written as

(fT)n+1 = (fT)n + He(bp41) kT Ay (6.25)

where the A~ represents the increment of tangential displacement. Note that
the tangential displacement 4 of (6.23) represents the total elastic tangential
displacement at the contact. If the contact is in ‘sliding’ mode, the tangential

force then becomes

(fr)n+1 = (fT)n + He(bnt1) k(DY — A4P) (6.26)

The remaining results of Chapter 2 apply for these contact modes assuming that
over the finite incremental motion the particles remain in contact throughout the
time step. Now, the incremental normal and tangential contact laws (6.24)-(6.26)
form the basis of the contact model between two particles. Thus, the Hertz solution
to the contact of infinite circular cylinders forms the foundation of the contact model

underlying the numerical algorithms of Chapter 4 and Chapter 5.
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6.5. Numerical simulations

With the addition of the Hertz solution to the contact model, the behavior
of the numerical material takes on the added physical meaning of the response of
a similarly graded granular material subject to plane strain loading. Herein, the
circular cylinders represent the action of individual soil particles contained in a
repeating control volume subject to plane strain loading. The predicted behavior

of the numerical material can now be compared with experimental plane strain test
data.

Before comparing the numerical model and experimental tests, one must
consider and clarify the limitations and shortcomings of such a comparison. Consider
the plane strain basis of the comparison. The numerical model represents a classical
plane strain formulation with infinitely long cylinders identified as soil particles.
However, actual three-dimensional tests model plane strain behavior by restricting
deformation in the longest specimen direction. The typically tabular shaped samples
contain a very large number of finite sized particles. Thus, the comparison reduces
to a purely plane strain numerical model and a three-dimensional experiment

configured to model plane strain behavior.

Also, consider the boundary condition basis of the comparison. Recall that
the assumption of homogeneous deformation is implicit in the numerical model.
The basis for comparison of the numerical model and experimental results rests on
the experimental apparatus’ ability to allow homogeneous deformation. However,
such effects such as end plate friction and membrane-soil interaction are inherent
in physical experiments. The prevalence of these factors in experimental results
directly influences the applicability of the homogeneous deformation assumption for

the experiment.

Finally, consider the possible scaling effects produced by using a relatively small
number of particles to represent a soil sample. The numerical model assumes that
the particles in the control volume are sufficiently representative to capture the
geometric characteristics of the soil. Yet, a large number of particles are typically

necessary to capture a soil’s gradation, packing, and overall void structure. Thus,
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a trade off typically exists between the cost of the numerical simulation, i.e., the
number of particles in a control volume, and how representative the control volume

will be of the model soil.

Experimental results

Many investigators [42-47] have studied the plane strain behavior of granular
materials. Vardoulakis [48] and Vardoulakis and Graf [49] present extensive studies
of the plane strain compression of dry sand that appear representative of the
behavior of granular materials in plane strain loading. Their test samples appear
tabular in shape with their long axis perpendicular to the loading direction. The
sample is placed in a conventional triaxial loading frame with two stiff frictionless
plates to restrict the strain to two dimensions. The cell pressure remains constant
while the loading piston compresses the sample under constant driving speed. The
piston displacement and force are measured throughout the test. Vardoulakis
and Goldscheider [50] explain in greater detail the biaxial apparatus and testing

procedure.

Two different experimental results will be used for comparison with the
numerical model. The first test from Vardoulakis [48] consists of the plane strain
compression of a dry Osterchelde sand at a confining pressure of 29.43 N/ cm?’. The
sample’s initial void ratio equaled e = 0.621 and specific gravity was Gs = 2.66. The
second test from Vardoulakis and Graf [49] was performed at a confining pressure
of 19.62 N /cm2 on a dry sample of Karlsruhe sand with an initial void ratio equal
to e=0.577.

The reported experimental data for both tests consists of the variation of the
axial force P, with the axial displacement u,. For comparison with the numerical
simulations, the deviator stress Ao, and the axial strain ¢, have been calculated

with the following equations:

Ao, =01 —03 = Z;)— (6.27)
€y = 22 (6.28)

where Ag represents the initial unloaded cross-sectional area of the sample, and I,
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denotes the sample’s initial length in the direction of loading. The variation of the

deviator stress Ao, and axial strain ¢, can now be plotted.

Numerical material properties

The two control volumes used in the numerical simulations consist of
parallelepipeds of infinite circular cylinders. Each volume contains 49 and 196
particles (cylinders) randomly arranged. All loading takes place perpendicular to
the axis of the cylinders. Recall that the control volumes represent one cell within
a periodic structure. The control volume of interest is surrounded in all directions
by identical parallelepipeds. All particles within the cell possess the same material
properties but not necessarily the same geometric properties. The particles may be

randomly dispersed throughout the cell and have varying radii.

In choosing the material properties, namely, the Young’s modulus and Poisson’s
ratio, of the repeating cell particles consideration must be given to the composition
and origin of soil particles. The principal constituents of the solid phase of soils are
various amounts of crystalline and noncrystalline clay materials, nonclay minerals,
and precipitated salts. In particular, nonclay materials such as sands, gravels, and
the majority of silts are typically comprised of rock fragments or mineral grains of
the common rock-forming minerals. Thus, the properties of the pre-existing rock
from which the individual grains originate can be used to estimate the material

properties of the particles in the numerical model.

Consider numerical soil particles that originate from rock fragments or mineral
grains of common sedimentary rocks such as sandstone, siltstone, shale, and
claystone. The particle size of the reference materials varies from .2 —.00625 cm for
sandstone, .00625 —.00039 cm for siltstone, and < .00039 cm for shale and claystone.
The Young’s modulus and Poisson’s ratio of these common quartz materials have
been determined from unconfined compression tests. The rock samples are typically
core specimens of length approximately twice the diameter. A summary of these
properties for the reference materials and many other common rock materials can
be found in Physical Properties of Rocks and Minerals [51]. The Young’s modulus

and Poisson’s ratio of the numerical soil particles are chosen to lie within the range
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Table 7. Model and material parameters.

Model parameters
Macromechanical error tolerance: RTOL = 1.0 x 10~".
Micromechanical error tolerance: rtol = 1.0 x 1078,
Material constants
Particle Young’s modulus: E = 0.25 — 2.0 GPa.
Particle Poisson’s ratio: v = 0.20.
Particle friction angle: ¢ = 30°.
Particle contact cohesion: g = 0.

Contact hardening parameter: H' = 0.

of the reference material’s properties.

Table 7 summarizes the model and material parameters of interest. The
error tolerances listed represent the convergence criterion used in the numerical
algorithms described in Chapter 4 and Chapter 5. A Young’s modulus in the
range of 0.25 — 2.0 GPa and a Poison’s ratio equal to 0.20 has been used. All
numerical simulations assume an elastic-perfectly plastic contact model for each

particle contact by employing a contact hardening parameter equal to H' = 0.

Forty nine-particle control volume

The initial control volume configuration for this example is shown in Figure 34.
The control volume configuration isolates the effect of a random arrangement of
particles from the effect of randomly sized particles. All particles in the repeating
cell have a radius equal to 0.0092 cm. This particular radius has been chosen to
equal the mean particle radius of a randomly sized and randomly arranged 196-

particle control volume. The voids in the particle configuration seen in Figure 34
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have been created by removing seven particles from a closest packed arrangement
of 56 particles. The initial cell contains 126 particle contacts and has dimensions of
0.12880 cm x 0.12748 cm.

For all simulations, the value of the maximum normal contact force between
two particles equals P, = 2.0 N for all particle contacts in the repeating cell.
Thus, the normal and tangential contact stiffnesses remain constant for all particle
contacts. Also, the ramp function ¢ equals zero. Recall that ¢ defines a finite
transition zone from no-contact to full-contact. With ¢ = 0, an exact simulation of
the abrupt transition to full contact can be obtained. As a result, the ramp function
H,(6n41) exactly models the Heaviside function H(6) and has the form

_J1, ifbpys >0
Hlou) = {0 it 20 (027)
Finally, the overall stress state of the control volume at the end of each timestep
has been calculated using a volume equal to the current cross sectional area times a
unit thickness. The stress field then becomes a Cauchy representation of the stress

state since the current deformed configuration has been used.

The first numerical experiment reproduces the confining stress of 29.43 N/ cm?
in the Vardoulakis [48] test on dry Osterchelde sand. The control volume experiences
two increments of isotropic stress of A}, = Ag;, = —14.715 N/cm?; A}, = 0.0.
Following the isotropic compression, the control volume experiences increments of
axial loading of Ag]; = —0.50 N/cm2; A3, = AdTy = 0.0 until the algorithm no

longer converges.

Figure 35 presents the response of the control volume by plotting the variation
of the deviator stress Ag* = As]; — Ad3, versus thé axial strain €; along with
the experimental results obtained by Vardoulakis [48]. The numerical simulations
~ have been run for four different Yoﬁng’s moduli of 0.25, 0.50, 1.00, and 2.00 GPa.
Figure 35 indicates that as the Young’s modulus increases the response of the
control volume becomes stiffer as indicated by a steeper deviator stress-axial strain
curve. Figure 36 shows an enlargement of the initial stress-strain behavior of the
numerical and experimental results. All four values of the Young’s modulus provide

good correlations with the experimental results. Figure 37 shows the deformed
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configuration of the control volume at the end of the numerical simulation with the
Young’s modulus equal to E = 0.25 GPa. At the end of this loading, the control
volume contains 119 particle contacts of which 35 have plastiﬁed,'i.e., entered “slip”

mode, and a maximum normal contact force equal to 3.09856 N.

Figure 38 presents the behavior of the control volume to a loading history
similar to the one employed by the Vardoulakis and Graf [49] on Karlsruhe sand.
The control volume experiences an isotropic stress of Ag}; = Ag3, = —9.81 N/ cm?;
A5}, = 0.0 applied in two increments to provide a confining stress of 19.62 N / cm?.
Next, the loading consists of axial stress increments of Agj; = —0.50 N/cmz;
A5}, = A6}, = 0.0. The predicted behavior at the same four different Young’s
moduli appear along side the experimental test data. Like the previous simulation,
the predicted stress-strain behavior appears similar to the experimental data. In
particular, Figure 39 shows the comparison of predicted and experimental data at
small strains. The deformed control volume at the end of the loading with Young’s
modulus equal to E = 0.25 GPa can be seen in Figure 40. At this point, the
repeating cell contains 119 contact of which 37 have plastified and a maximum

normal contact force equal to 2.11516 N.

One hundred ninety six-particle control volume

The initial control volume configuration for this example is shown in Figure 41.
The repeating cell contains 196 randomly sized randomly arranged particles
originally configured by Kuhn [36]. The mean particle radius equals 0.0092 cm, and
the initial cell dimensions are 0.2566 cm x 0.2565 cm. Unless otherwise noted the
model and material parameters equal those listed in Table 7. Three analyses have
been performed to evaluate the performance of the numerical model on a randomly
configured control volume. The first analysis considers the sensitivity of the model
to certain parameters such as the ramp function € and maximum normal contact
force Pmaz. The second analysis evaluates the convergence characteristics of the
model. The final analysis compares the deviator stress-axial strain behavior with

experimental results. -
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Sensitivity analysis

The numerical model performance is tested for sensitivity to variations in the
ramp function ¢ and maximum normal contact force Ppqz. For all sensitivity
simulations, the control volume experiences a loading history consisting of two

increments of isotropic compression followed by axial loading increments of Ad]; =

—0.50 N/cm?; A3, = Adt, = 0.0.

In the ramp function study, the two isotropic compression increments equal
AG}; = Agyy, = —14.715 N/cm2; AG3, = 0.0, and the Young’s modulus and Prqz
equal 2.0 GPa and 2.0 N, respectively. Three different values of € have been defined:
0, 0.05 * Ryin, and 0.1 % Ry where Rpin equals the radius of the smallest particle
in the control volume. For the 196-particle control volume, R,,;, equals 0.00503 cm.
Thus, the ramp function creates a constant layer of softer material of thickness ¢/2
around each particle in the control volume. For example, when € = 0.05 * Rpin,
every particle in the repeating cell has a softer layer of thickness equal to 5% of the

smallest particle radius or 0.0025 mm.

With the ramp function ¢ equal to zero, the model failed to converge for the
initial increments of isotropic compression. The random sizes of the particles within
the repeating cell naturally cause relatively large particles to come into contact with
smaller particles. Since the contact stiffnesses ky and kr depend on the radii of
the contacting particles, the contact stiffnesses throughout the repeating cell vary
depending on which particles lie in contact. Thus, the different sized particles in the
196-particle control volume produces a numerically “stiff” system. This behavior
can be contrasted with the performance of the 49-uniformly sized particle control
volume. In this case, the contact stiffnesses ky and kr are constant for all contacts in
the control volume. A ramp function equal to zero does not hinder the convergence

as shown in Figure 35 and Figure 38.

The performance of the model with non-zero ramp function can be seen in
Figure 42. The deviator stress-axial strain behavior for € equal to 0.05 * Ry
and 0.1 * Ry,;n have been plotted against the experimental data for Osterchelde
sand [48]. The figure shows the better convergence behavior of the model as it

becomes less stiff with a larger ramp function. However, the stress-strain behavior
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does not differ significantly in the initial portion of the loading history. Thus, a
larger ramp function enhances the convergence of the model without significantly
sacrificing accuracy. Yet, care should be exercised while choosing a value of e. A
large of a ramp function could contaminate the accuracy of the solution by creating

too large of a soft band around the particles.

The sensitivity of the model to the choice of the maximum normal contact
force Pmag is investigated next. The two increments of isotropic compression equal
Agt, = Aoy, = —9.81 N/cm?; A}, = 0.0. Figure 43 contains the stress-strain
behavior with a Young’s modulus of 0.25 GPa and Pmas equal to 35.0, 10.0, and
2.0 N. Also, indicated in the figure are the values of the actual maximum normal
contact force P2, in the control volume at the end of the simulation. Figure 43
shows a similar stress-strain behavior for different values of Ppey in the early
portions of the simulations. As the value of Ppgy approaéhes the value of P2,
the secant approximation to the Hertzian contact laws becomes more accurate.

Correspondingly, the convergence properties of the model improve.

Convergence analysis

The numerical model is next tested for convergence. The Young’s modulus
and ramp function for the two. convergence analyses equal 0.50 GPa and 0.1 * Rmin,
respectively. In the first convergence test, the control volume initially experiences
a confining stress of 29.43 N/cm2 applied in two increments of Ag]; = Ady, =
—14.715 N/cm?; AG3, = 0.0. The second test uses a confining stress of 19.62 N/cm?
applied in two increments of Ag}, = Ay, = —9.81 N/cmz; AG}, = 0.0. The control
volume is then compressed axially to a deviator stress of Ag* =15 N/ cm? in 3, 30,

150 increments of A&7;.

Table 8 presents the results of the convergence study. The results indicate that
the model is convergent in the sense that an axial strain exists to which the solution
tends as the number of steps increases. For the simulation with a confining stress of
29.43 N/ cm?, the error of the three-step solution is in the order of 0.5% relative to
the 150-step solution. For the test with a confining stress of 19.62 N/ cm?, the model

failed to converge for the largest increment of axial strain. As the increment size
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Table 8. Convergence test for the 196-particle assembly: E = 0.50 GPa.

Confining stress: o}, = 73, = 29.43 N/cm2; deviator stress: Ag* = 15.0 N/cmz.,

Axial stress increment (N/cm?) AAu, %
-5.0 -0.38375
-0.5 -0.38539
-0.1 -0.38555

Confining stress: 67; = 63, = 19.62 N/cm?; deviator stress: Ag* = 15.0 N/cm?.

Axial stress increment (N/cmz) AAq1, %
-5.0 n/c
-0.5 -0.48953
-0.1 -0.48982

Il/C = Nno convergence

decreased, the results appeared convergent in the same manner as the convergence

test at the higher confining stress.

Simulations of experimental tests

The behavior of the 196-particle control volume is compared to the
experimental data for Osterchelde and Karlsruhe sands. The loading history for
these numerical simulations is identical to the corresponding tests on the 49-particle
repeating cell. Again, the effect of different Young’s moduli has been investigated
with £ = 0.25, 0.50, 1.00, and 2.00 GPa. The ramp function, however, now equals
0.1 x Rpin.

Figure 44 shows a comparison of the deviator stress-axial strain behavior of
the repeating cell at a confining stress of 29.43 N/ cm’ with that of the Osterchelde
sand [48]. The predicted behavior at all four values of the Young’s modulus provide
good correlations with the experimental results particularly in the initial portion of
the loading history. Figure 45 shows an enlargement of this region of the stress-
strain graph. The simulation with the Young’s modulus of 2.0 GPa provides the
best correlation with the experimental data. Figure 46 presents the deformed control
volume at the end of the test with F = 0.25 GPa. For this configuration, the control
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Table 9. Initial secant modulus.

Confining stress: &}; = 03, = 29.43 N/cmz.

Young’s Secant Modulus (N/cm?)  Secant Modulus (N/cm?)
Modulus (GPa) 49 Particle Repeating Cell 196 Particle Repeating cell
0.25 33.7338 29.8073
0.50 59.1248 38.5258
1.00 99.3776 49.7157
2.00 158.3656 63.1377*

Experimental data: initial secant modulus = 76.8263 N/ cm®.

Confining stress: ], = 75, = 19.62 N/cm?.

Young’s Secant Modulus (N/cm?)  Secant Modulus (N/cm?)
Modulus (GPa) 49 Particle Repeating Cell 196 Particle Repeating cell
0.25 33.3035 23.7078
0.50 56.6170 30.6107
1.00 90.7327 39.0597*
2.00 150.4227* 48.7559*

Experimental data: initial secant modulus = 65.6802 N/ cm?.

* Secant modulus based on the final axial stress and strain.

volume contains 428 particle contacts of which 56 have plastified, and the maximum

normal contact force in the control volume equals 2.07579 N.

Figure 47 shows the stress-strain behavior of the numerical and experimental
tests at a confining stress of 19.62 N/ cm?. The experimental data is for a Karlsruhe
sand [49]. Again, the predicted behavior compares well with the experimental data.
The observed trend of the simulations with lower Young’s modulus providing better
convergence is apparent in this simulation. A smaller Young’s modulus makes the
model less numerically “stiff” in a similar manner to the effect of a larger ramp
function. Figure 48 shows the initial stress‘strain behavior. Figure 49 shows the
deformed repeating cell at the end of the test with E = 0.25 GPa. Here the control
volume contains 408 contacts of which 60 have plastified, and the maximum normal

contact force in the control volume equals 1.69781 N.

Table 9 contains a comparison between the initial secant modulus of the
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numerical simulations and experimental data. The secant modulus has been
calculated for an axial strain equal to 0.5% for the 49 and 196-particle control
volumes at confining stresses of 29.43 N/ cm?® and 19.62 N/ cm®. The results indicate
that for the range of the Young’s moduli considered the model produces an initial
secant modulus of the same order of magnitude as the experimental data. In general,
the 196-particle control volume performs better than the more uniform 49-particle
volume in capturing the initial behavior of the material at higher Young’s modulus.

In both cases, however, good correlation with the experimental data can be seen.

Throughout these comparisons the numerical model predicts similar behavior
under plane strain compression as reported in the experimental tests. The numerical
model for the 196-particle control volume has not been proposed to exactly reproduce
the observed behavior of the plane strain compression of sand reported in the
literature. However, the behavior of the algorithmic specimen can only be expected
to appear similar and consistent with the experimental results. The similarity of
the numerical and experimental responses demonstrates the validity of the numerical
model to predict plane strain responses of granular materials. Further extension of

the model is now possible to such areas as creep modeling.
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Figure 34. Initial configuration for the 49-particle
control volume; particle radius r = 0.0092 cm.
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Figure 35. Deviator stress Ag* versus axial strain
€1 for the 49-particle control volume at different
Young’s moduli and Osterchelde sand. Confining

stress = 29.43 N/cm®.
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Figure 36. Initial deviator stress Ag* versus axial
strain €; for the 49-particle control volume at
different Young’s moduli and Osterchelde sand.

Confining stress = 29.43 N/cm®.
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Confining stress

29.43 N/cm?; particle radius r = 0.0092 cm.
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Figure 38. Deviator stress Ag* versus axial strain
€1 for the 49-particle control volume at different
Young’s moduli and Karlsruhe sand. Confining

stress = 19.62 N/cm?.
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Figure 39. Initial deviator stress AG* versus
axial strain €; for the 49-particle control volume
at different Young’s moduli and Karlsruhe sand.

Confining stress = 19.62 N/cm®.
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Figure 44. Deviator stress Ag* versus axial strain
€1 for the 196-particle control volume at different
Young’s moduli and Osterchelde sand. Confining

stress = 29.43 N/cm”.
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Figure 45. Initial deviator stress Ag* versus axial
strain € for the 196-particle control volume at
different Young’s moduli and Osterchelde sand.

Confining stress = 29.43 N/cm®.
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Figure 47. Deviator stress Ag* versus axial strain
€1 for the 196-particle control volume at different
Young’s moduli and Karlsruhe sand. Confining

stress = 19.62 N/cm®.
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Figure 48. Initial deviator stress A&* versus
axial strain €; for the 196-particle control volume
at different Young’s moduli and Karlsruhe sand.

Confining stress = 19.62 N/cm®.
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Chapter 7

Fluid Flow Model

7.1. Introduction

Since the dry model discussed in the previous chapters is capable of predicting -
the volume changes resulting from simple shearing, we can use it to predict the pore
pressure changes in fully saturated granular assemblies as a result of changes in the
soil’s microstructure. In reality, the pore pressures in a saturated granular assembly
can vary microscopica.lly in the same random fashion as the particle-to-particle
contact stresses because of local variations in the volume of voids between particles.
For example, water squirted between particle contacts could be one source of such
local variation in the pore water pressure [52]. However, the overall pore pressures
on the macroscale level must be consistent with the overall macroscopic motion. In
this study, we assume that the pore pressure variable is a macroscopic quantity that
is homogeneous throughout the cell of interest. A consequence of this assumption
is that the presence of water only serves to impose a macroscopic constraint on the
overall volume change of the particle assembly, but does not directly impact the
local motion of the individual particles. The following discussion elaborates this

latter point.
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7.2. Balance Laws

Let &* be the tensor of overall imposed stresses on the granular assembly, &
be the overall stresses arising from the particle-to-particle contacts, and 6 be the
homogeneous macroscopic pore pressure in the assembly; then the effective stress

equation reads
gt=a+01 (7.1)

where 1 is the Kronecker delta. Now, let us consider the influence of undrained
deformation on the overall deformation represented by the strain tensor €. Since

& = &(€) and fluid flow is inhibited, then we can use the constitutive equation

6 = Ay tr(€)/n, where n is the porosity of the assembly, to obtain

o*=o(e)+ i\nﬂ tr(e)1 (7.2)
where ),, is the bulk modulus of the water phase. Now, if the water phase itself
is assumed to be incompressible, then A, > 1, which yields tr(¢) — 0, i.e., the
deformation becomes macroscopically volume-preserving. Note that this constraint
impacts the motion of the particles collectively rather than individually. Thus, the
volume constraint due to the presence of water may be viewed either as a factor that
alters the overall stress-strain behavior of the granular assembly, or as a driving force
that causes a change in the pore water pressure due to the assembly’s tendency to

change in volume.

An integra.léquation for balance of momentum can be developed in terms of
the overall stress tensor #*. Balance of momentum over the entire total domain

with volume ¥ and outer surface OU takes the form

/poGdV+/ 5 ndA=0 (7.3)
u ou

where py is the reference mass density of the infinitesimal volume element dV, G is
the gravity acceleration vector, and n is the outward unit normal to the surface dA.
In the context of particulate mechanics, the periodic cell V defined in the previous

chapters now takes the meaning of the macroscopic differential volume element dV.
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Assuming that both the solid grains and fluids are incompressible, balance of
mass for the solid-water mixture takes the form (see [53])

divv +divo =0 (7.4)

where v is the macroscopic intrinsic velocity of the solid phase, 9 is the macroscopic
superficial Darcy velocity, and div is the spatial divergence operator. For undrained
condition, ¥ = 0 since the solid and fluid phases move as one body. Consequently,
this condition gives rise to the constraint dive = tr(é) = 0, which is precisely
recovered from (7.2) when A, > 1.

A mathematical formulation casting (7.3) and (7.4) into the framework of
a finite element (FE) continuum model is presented in [53]. The standard FE
solution methodology entails dividing the domain into smaller finite elements and
evaluating the FE matrix counterparts of equations (7.3) and (7.4). The domain
integrals are then evaluated numerically by Gauss integration rule to form a FE
consolidation model. The numerical formulation of the FE consolidation model is
well documented and is beyond the scope of this report (see e.g. [54]). However, the
link to particulate mechanics can be established through the macroscopic response
of each Gauss integration point, which may be evaluated from the overall response
of the particle assembly according to the theory presented earlier in this report. In
the following section we shall assume that such link has already been established,
and describe a numerical example which illustrates the impact of fluid flow on a

continuum material model exhibiting a dilatant behavior.

7.3. Numerical Example

The objective of this numerical example is to study the impact of fluid
flow on the deformation behavior of granular assemblies treated as a continuum
material. Here, we consider a two-dimensional plane-strain FE mesh shown in
Fig. 50. The elements are Q9P4 (9-noded Lagrangian for displacements and 4-
node bilinear for pore pressures) in which the material behavior is given by the
Drucker-Prager plasticity model with associative flow rule. This material model is

phenomenological and not derived from the particulate mechanics theory. However,
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since the objective of this example is to study the general behavior of the continuum
model, such substitution is not critical to the results of the formulation. Ideally, a
full numerical analysis would have entailed two levels of modeling, the first being
the micromechanical level and the second being the continuum level; however, the
computations engendered by this type of analysis are extensive and prohibitively
expensive, and so the first level of modeling will be suppresséd altogether and will

be replaced with a phenomenological constitutive model.

Figure 50 also shows all the boundary conditions and imposed deformation.
The elastic material parameters are: Young’s modulus £ = § X 10* kPa, and
Poisson’s ratio v = 0.1; regular elements have cohesion ¢ = 80 kPa, friction angle
¢ = 35°, and hardening parameter H' = 10 kPa; weak elements are placed on the
side of the mesh of Fig. 50 to trigger localized deformation, and are defined by a
material having cohesion of ¢ = 30 kPa, friction angle of ¢ = 15°, and hardening

parameter of H' = 0. All boundary pore water pressures are assumed zero.

Figure 51 shows plots of average normal stress in the z2-direction (&3,) versus
the imposed average nominal strain (€;2), assuming the response to be fully drained
(no excess pore water pressure). The deformation is applied in increments of
0.0625 m, or 1.25%, with a final compressed deformation of 20%. The mesh with
weak elements substituted at the side begins to yield and reaches a plateau at stresses
lower than those attained without weak elements; hence, the stress-strain curve for.
the mesh with weak elements plots on the lower side relative to the curve for the

mesh without weak elements. This phenomenon is a standard result.

Figure 52 shows plots of average normal stress in the zj-direction (&3,)
versus the imposed average nominal strain (€z2) for meshes without weak elements,
assuming the responses to be fully drained and fully undrained. For the fully
undrained case, consolidation is turned on at the end of the last loading phase,
with the total imposed deformation held fixed during this transient period of pore
pressure dissipation. Note that the stresses produced in the mesh for the undrained
case are greater than those reached for the drained case because the pore water
pressure is negative due to a dilating mesh. Consequently, the inclusion of the fluid

flow effect “strengthens” the mesh for this case dilating material. Again, this is a
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standard result.

While the results presented in this chapter are fairly standard, it sheds light
onto the possible connection between the micromechanical theory presented in this
report and the existing continuum models available for granular materials. In
principle, this connection should be clear from the outset as elaborated in this
numerical example. The modeling approach presented in this report is not the
same as the many particulate mechanics models available in the literature, in which
the micro- and the macromechanical aspects of the problem are combined directly
to form a single particle assembly that is subjected to a non-homogeneous mode
of deformation. The latter approach may have some difficulty tracing the actual
effect of material behavior and that of the nonhomogeneous boundary condition.
Computationally, the modeling approach presented in this study is amenable to
parallel computation, and with the current advances in computational hardware

and software modeling tools, the prognosis for a full analysis entailing two levels of

modeling is indeed positive.

135




LYVPIITIIIIY

W OQOQOQOQOQ

@ @ @ jQ \ ®

O.ﬂ @ 4 *—

?.Q @ ® @ @

O;$ @ :6 @ ®

m.s.e.e.s.Fweak
. . R . elements

¢————————0

G.Q 6.20.6.0)

Q.Q 4 ® 4 ®

Q.

REEEEEELEL,

Figure 50. Two-dimensional plane-strain FE mesh
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Figure 51. Resulting average stress 3, versus imposed average strain €2 demonstrating a
lower stress plateau reached when two weak elements are incorporated at side of mesh.
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Figure 52. Resulting average stress o3, versus imposed average strain €32 demonstrating a
“strengthening” effect due to negative pore pressures generated in a dilating material.
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Chapter 3

Summary and Conclusions

A methodology has been presented for determining the overall response of
a granular material based on the fundamental mechanism of particle-to-particle
interaction. = The mathematical foundation rests on a particulate mechanics
description of the behavior of two contacting particles. With this micromechanical
framework, a numerical algorithm solves the problem of a prescribed deformation
history for an assembly of particles representing a point in a granular material.
To make the overall assembly response independent of the imposed boundary
displacements, the formulation employs the notion of a repeating cell. An important
feature of the mathematical formulation lies in its generation of the micromechanical
responses quasi-statically, and not dyné,mically. These fundamental features make

the model amenable to incorporation into conventional finite element codes.

To assess the performance of the model, two-dimensional plane-strain
simulations with regular and random initial packing of circular disks were performed.
The model captures some of the most important features of granular material
behavior such as anisotropy, hardening, and softening responses. In general, the
numerical stability of the solution depends upon the character of the imposed
overall motion—convergence of the iteration is easy whenever the shearing is
preceded by isotropié compression, but is difficult whenever the imposed motion

lacks the isotropic compression needed to keep the microstructure from collapsing.
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Interestingly, this characteristic of the numerical model reflects the property of the
subject prototype—that the stress response of granular media depends strongly

upon the imposed confining load.

In a natural extension of the deformation driven model, a methodology has
been developed for determining the overall deformation response of a granular
material to an imposed stress history. This formulation allows finite motions of
the individual particles, but the macroscopic material response is postulated based
on infinitesimal theory. An important by-product of the mathematical formulation
is the overall tensor of material moduli derived from the consistent linearization
of the elasto-plastic constitutive equation. Owing to the complexity associated
with the implementation of the exactly linearized algorithm, an alternative secant
approximation has been implemented that retains the essential properties of the
exact description. These moduli are then used to predict the onset of localized
deformation in granular materials on the macro-scale level. Again, a unique feature
of the model is its use of first principles to predict the stability behavior of an

assembly of discrete particles.

Numerical simulations with uniform as well as non-uniform assemblies of two-
dimensional circular disks demonstrate the model’s capability to capture some
of the most important features of granular material behavior. The stress-driven
format of the numerical algorithm allows the model to capture naturally such
mechanical responses as structural anisotropy, pressure dependency, and volume
change characteristics of granular materials. Thus, a fundamental understanding
of the behavior of particulate materials is available based on the interaction of the

constituent particles.
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Appendix A. Virtual contact separation

To calculate A% in equation (3.8) consider two rigid control volume particles
A and B in contact at c¢. Let the virtual displacement field produce a relative

displacement at contact ¢ given by
A°=uB _yh (A1)
where u°4 represents the virtual displacement of ¢ from the perspective of particle A.

Since the particles are assumed rigid, the relative motion of the particle contact
can be written in terms of a translation and a rotation. For example, particle A’s

contact motion can be written as
| ul = u + w. (2° — ) (A.2)
where w4¢ = —w°4 represents the rotation of contact ¢ relative to A, and u4
denotes the displacement of the centroid of A.
Substituting equation (A.2) and a similar equation for particle B into equation

(A.1) gives

A =uf —ut fwh . (2 - 24) — wB . (2 - 2F). (A.3)

The displacement of the ‘particle centroids can be defined from the series
expansion about the common contact point ¢. Assuming that the displacements
uB and u4 and the rotations w4 and w°? conform to some smooth field u and w

and that u® = u(«°) represents the value of u at the contact ¢, the contact rotations

‘become w4 = wB = w(z°). The centroid displacements can be written as
Ou;(x€
uft = ut + -’iag’-’l(zﬁ —z) +... (A4)
k
and
Oui(x®
u?=uc+%(mf—zz)+.... (A.5)
k
Subtracting (A.4) from (A.5) and substituting into (A.3) gives
. c
Af = Bui(=") _ wip(=®) | 1B + ... . (A.6)
Oz
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If the tensor ¢ is identified as

Ou;(x° c
bir = t;i: ) _ wir(z°), (A7)

then to a first order approximation the virtual separation reads
A°=¢- 148 (A.8)

which is identical to the field equation (3.10) specified for the contact c.
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Appendix B. Localization function

For a path-dependent material response, the constitutive equations are
integrated incrementally. When the deformation reaches the point where the

localization function _
f(n) = det[A(n)] (B.1)
becomes negative or zero, localization is said to have begun. To predict this onset

of localization the minima of the function f must be computed at the end of every

deformation increment.

In the two-dimensional case, the acoustic tensor A(n) takes the following form

n? K +nineKimz  niKine + n1n221(1122
+nan1 K121 + n2Ki212  +n2ni K121z + n K1z
A(n) = (B.2)
' n?Kia1 + n1n22{(1212 n?Kigs + n1n221{1222
+non1 Koo + n5Ko212  +nani Kooz + n5 Koz

where n; = cosf and ny = sinf, and the angle § defines the orientation of the
discontinuity planes. The localization function yields
f(n) = agn? + a1ndny + azn?n + aznind + ayn} (B.3)

where
ap = K1111K1212 — K1112Ki1211

a1 = KKz + Kiin K12 — K112 Ko211 — Kii2e Kion
az = K111 Ko + Ki112K1222 + K1211K2212

(B.4)
— Ki122K1212 — K1122K2211 — K1212K2211
a3 = Ky1112K2222 + K1211K2222 — K1122K2212 — K1222K2211
ay = Ki1212K2222 — K1222K2212
With the change of variables z = tan 6, equation (B.3) can be written as
f(z) = agz* + azz® + apz® + a1z + ap. (B.5)

The minima of the function f(z) occur at the roots of the cubic polynomial f'(z)
which can be analytically found using Carden’s formulae. Positive minima indicate
that localization has not yet developed while a negative or zero minimum signals

the onset of localization.
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Appendix C. Strain-driven problem: tangent operator derivatives

Unless otherwise specified, all quantities in this section have implied subscripts

of “n + 1” for time step and superscripts of ‘2’ for iteration step.

Taking particle A’s point of view, we have the following preliminary results:

A= n'(dA) = —n'(dB) = —(I —nnt)/||1];
n'(64) =n'(6%) =0,

(C.1)
(C2)

where n = n. Note that A = A, or Aij = Aji. Other necessary derivatives are as

follows. For the normal indentation, one has

§(d4) =—-6(dP)=n;

§(04) =808 =0.
One can verify that for the incremental slip,
Ay(d4) = —Ay'(dP) = (r* + rP) A0 (d4);

A’)’,(OA) —_— TA; .

A’)’I(OB) - _ TB,
where

A0 (dA) = (sec ABC m, x 3 + tan AOC n)/|[1]|;

A6C =sin"Y(ez-n, x n).

Also, the derivative of the ramp function becomes

0, if dp41 > €;
H;(&) = { 1/e, if0<ébp41 <c¢;
0, ‘ if 6541 < 0.

Now, assuming that particles A and B are in contact, one finds that

(@) = —fiy(dP) = —[Hekn6 + Heky] 8(d4);

(6% = sy (%) =0.
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If the contact mode is ‘stick,” the corresponding derivatives of the tangential force

become
fr(d®) = —fr(d”) = H by Av8(d%) + He kr A (@), (C13)
A
r
£1(0%) = (5) F1(07) = —Hekrr? (C.14)
and if the contact mode is ‘slip,” the derivatives of the tangential force are
fr(@*) = - fr(d?), (C.15)
kr
A — ! A P
) = g [ @)+ [ (8 = 27

— (") Heky tan ¢(H!6n41 +H€)] 6’(dA)], (C.16)

H.H'k
1 (nAY __ T A
where () = (fr)n + HekrAy.
Constructing the local force gradients, one obtains
d*)
F(a4) = [ I3 ] C.18
( ) fT(dA) (2x2) _ ( )
F(64) = { v } . C.19
( ) ffll‘(aA) (2x1) ( )
Since f = R - F, the chain rule yields
fl@=-f@d?)=R-F(d*) +Rd*) F. (C.20)
The last term on the right-hand side of (C.20) has the explicit form
R(dA . F = | (Anfy = Anfr) (Anfy - Anfr)| .
(@%)-F [(/hzfzv + Aufr) (Az22fn + Aw2fr) (C:21)

in which the A;;’s are given in (C.1). Finally,
A
£0%) = (55)F(0%) = R-F(04) + ROHF = fp(0*)n xes.  (C:22)
This completes the derivatives necessary to construct the gradient £¢'(d¢).
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Appendix D. Stress-driven problem: tangent operator derivatives

Consider contact element ‘e’ to represent the contact between particle A and B.
Unless otherwise specified, all quantities in this section have implied superscripts of
‘k’ for iteration step. Taking particle A’s point of view to write the force derivatives
in (5.46) and (5.47) can be written as

AB rapAB(JA 7
or7” _ [0 (D.1)
adA L adA ) (3)(3)
afAB 'afAB(dA) afAB(oA)'
—= - i (D.2)
adA i 3dA o0 J (3)(3)
where
A dA
fAB — { .f } dA = { } : (D3)
: rA fr (3x1) 64 (3x1)
and
- JA - JA '
dA={d } d*‘:{dA} . (D.4)
0 J (3x1) 0% J (3x1)
The following preliminary results extend from Appendix C:
anﬁ _ t on; _ on; .
An-‘-gz'j—"(l-'—nnnﬁ)/”ln", aaA—()’ aoA"'oa (D5)
ann-l'-l a""'n+1 ann+l
Anp1i= —=im = — == == (I = nnsrnn) /Mlanlls —55—=0.(D6)

where n; = nZ and a4 = nf . Note that Az = AL and Apt1 = Al

Other necessary derivatives are as follows. For the normal indentation, one has

Obp41 _ Obpyy _ Obpny1

SaA -~ oA =Nnt1, o1 = 0. (D.7)
For the incremental slip, one can write
6A7 6A7,~, 6A7,~,
— = — —, D8
odA  adA adA (D8)
and
0Ay  0Ay; | 0Av; , (D9

8dA ~ odA  HdA
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where

Ny [ oA0T
aa:);n - (TA—I-TB) aaA , (DIO)
= (rA + rB) [sec Ao,? n, X e3 + tan AH;? nﬁ] /"lﬁ” ) (D.11)
362‘15 -0, | (D.12)
and
OAY; dA6C
aaln — (rA+rB) aaA , - (D13)
= (rA + rB) [secAeg €3 X M,y + tan Aag nﬁ] /It
+ (rA + rB) [sec AG,-? n; X ez + tan A0,~? nn+1] [tn+1l] ,(D.14)
8 A%
Fali = (rA +rP) = (D.15)
= (rA + rB) [sec A(),-? n; X ez + tan AG;? nn-i-l] /"ln-l-l“ . (D'IG)

Similarly, considering the rotation effects gives

0Ay  9Av; + 0A~;

568 = 908 T 9oA (D7)
where
0A~;
504 = 0, (D.18)
6A7,~, _ A
50A =T (D.19)
The derivative of the ramp function becomes
0, if épy1>€;
Hl(6) = { 1/e, if0 < bpy1 <¢; (D.20)
0, if 6,41 <0. ’
Now, the derivatives of the normal force can be written as
ofn _ Ofn _ /
-a-a-z = -a-(:l-:; = - [Hcths,,.H + HJCN] Nyl , (D.21)
Ofn _
304 = 0. (D.22)
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If the contact mode is ‘stick,” the corresponding derivatives of the tangential force

become
g'a% = HekrA a;;“ + Hekr%%f ,
T Higag S+ Hbr o2l
gg—i = —rAHckr.
If the contact mode is ‘slip,” the derivatives of the tangential force are
— ()Hckrky tan ¢(H6p41 + He )} 6;:;1
+ H’kangZ]
Z;i = HckT1+ 77 [[HékTH’(Afy — AqP)
— () Hekrky tan ¢(H bnt1 + Hc)] 8;55:1
O0A
+ H'Heky 6d7]

where (-) = (f7)n + HekrA~.
Since f = R - F, the chain rule yields
of _ R. 0F OR(d4)

—_—= = = - F ’
aA " paA T gan

A
9f _g. 97 [OR@) .
9aA " oaA ' pah

where
0F _ [0fn afT]‘
odA  |8dA’ 8dA](axz)
oF [ofn  Ofr]’
Th [B&A ’ 6&A](2x2) '
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(D.26)
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(D.28)
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The last term on the right-hand side of (D.28) and (D.29) has the explicit form

OR(d") _OR(d") _ [(Anfn — Anfr) (Anfy - Anfr) (D.32)
ddA ddA (A12fn + Aufr) (Aszfn + Ar2fr) '

in which the A;;’s are given in (D.6). Finally,

aof oF BR(dA) oF
504 = B 5p7 502 -f:mn,ﬂ.lxea. (D.33)

This completes the derivatives necessary to construct the algorithmic tangent

R

operator.
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Computer Code for Micromechanical and Macromechanical Model

alalalalalal

aXalal

PROGRAM MACRO

alalaXaXaXalakalaEaka¥akakalalalalkale!

. MAIN PROGRAM

IMPLICIT REAL*8(A-H,0-Z)

. REMOVE ABOVE CARD FOR SINGLE PRECISION OPERATION

DIMENSION IDIAG(5000)

DIMENSION AUPPER(200000),ALOWER(200000),B(3000)
DIMENSION XA(2),XB(2),XL0(2)

COMMON /MACRO / FSIG(3),SIG(3),EP(3)

COMMON /PARTCL/ X(3,1000),NPART,RMIN

COMMON /INFO / IEN(2,20000),ID(3,1000),LM(6,20000),

X NUMEL ,NEQ,NSTIFF
COMMON /DSDATA/ D(3,1000),DD(3,1000),DINC(3,1000),
X DDINC(3,1000)

COMMON /FDATA / FTN(20000),ALPHA(20000),1CON(20000)
COMMON /ELDATA/ SKN,SKT,A,TANPHI,HP
DATA ZERO,ONE/0.0D0,1.0D0/

OPENCUNIT=12,FILE="outl',STATUS="UNKNOWN')
OPEN(UNIT=24,FILE="out2',STATUS="UNKNOWN')
OPEN(UNIT=36,FILE="out3',STATUS="UNKNOWN')
OPEN(UNIT=48,FILE="out4',STATUS="UNKNOWN')
OPEN(UNIT=60, FILE="out5"',STATUS="UNKNOWN')
OPENCUNIT=51,FILE="1input',STATUS="UNKNOWN')

. INPUT CONTROL DATA.

THE INPUT FILE 'input' TAKES THE FOLLOWING FORM:

NPART,XCELL,YCELL,SKN,SKT,A,PHI ,HP
X(1,Y(1),RADIUS(L)

k(NPART),Y(NPART),RADIUS(NPART)

WHERE:

NPART=NUMBER OF PARTICLES IN THE CONTROL VOLUME
XCELL=X DIMENSION OF THE CONTROL VOLUME.
YCELL=Y DIMENSION OF THE CONTROL VOLUME.
SKN=NORMAL SPRING STIFFNESS.

SKT=TANGENTIAL SPRING STIFFNESS.

A=PARTICLE COHESION.




PHI=PARTICLE FRICTION ANGLE.

HP=HARDENING PARAMETER.

TANPHI=TAN(PHI).

RADIUS(N)=RADIUS OF PARTICLE N.

X(N)=X COORDINATE OF THE PARTICLE N'S CENTROID.
Y(N)=Y COORDINATE OF THE PARTICLE N'S CENTROID.

THIS DATA IS READ INTO THE ARRAY X WHERE EACH ELEMENT HAS
THE FOLLOWING MEANING:

X(1,N) = X(N)
X(2,N) = Y(N)
X(3,N) = RADIUS(N).

RMIN = MINIMUM PARTICLE RADIUS IN THE CONTROL VOLUME.

a¥aXaXalalalalalalakalalaXaXala)

READ(51,*) NPART,XCELL,YCELL,SKN,SKT,A,PHI,HP
WRITE(12,999)NPART,XCELL,YCELL,SKN, SKT,A,PHI,HP
WRITE(6,999)NPART,XCELL,YCELL,SKN,SKT,A,PHI ,HP
WRITE(36,999)NPART,XCELL,YCELL, SKN, SKT,A,PHI,HP
c WRITE(12,996)
RMIN = 1.0D5
RMAX = 0.0D0
DO 15 I=1, NPART
READ(51,*) X(1,I),X(2,I),X(3,I)
RD = X(3,I)
RMIN = DMIN1(RMIN,RD)
RMAX = DMAXL1(RMAX,RD)
C WRITE(6,998)X(1,I),X(2,I),X(3,I)
15  CONTINUE
PI=4.0D0*DATAN(1.0D0)
TANPHI=DTAN(CPHI*PI/180@.0D0)

. BOUNDARY CONDITION DATA: FIX ORIGIN PARTICLE

alakal

CALL ICLEAR(CID,3*NPART)
D01 I-1, 3
: I, =1
i CONTINUE
do 2 i=1, npart
id(3,1)=1
2 continue

. ESTABLISH EQUATION NUMBERS

a2¥aXaXsNale]

NEQ = @
DO 10 N=1, NPART
DO 10 I=1, 3
IF(ID(I,N).EQ.9) GOTO 5
ID(I,N) =0
GO 70 10
5 NEQ = NEQ + 1




e ID(I,N) = NEQ
10 CONTINUE
WRITE(12,994)
DO 11 I=1, NPART
WRITE(12,993) I, (ID(J,I), J=1,3)
11  CONTINUE

... INPUT CONTACT ELEMENT DATA
ASSUME THAT A PARTICLE MAY INTERACT ONLY WITH
PARTICLES WITHIN A RADIUS EQUAL TO 4*(LARGEST
PARTICLE RADIUS).

aNakalakakaKsala sl

XACD) = X
PY XAC2) = ZERO
XB(1) = ZERO
XB(2) = YCELL

DET = XAC1)*XB(2)-XB(1)*XA(2)
NUMEL

DO 20 NA=1,NPART-1
DO 60 NB=NA+1,NPART

CELL

RA
RB
RPLUSR

X(3,NA)
X(3,NB)
RA + RB

XLO(1) = X(1,NB) - X(1,NA)

® XLOC2) = X(2,NB) - X(2,NA)
AA = (XB(1)*XLO(2)-XB(2)*XLO(1))/DET
BB = (XAC2)*XLO(1)-XA(1)*XL@(2))/DET
SIGNA = ZERO
IF(AA.NE.ZERO) SIGNA=AA/DABS(AA)
SIGNB = ZERO -
IF(BB.NE.ZERO) SIGNB=BB/DABS(BB)

DO 65 I=0,1
DO 70 J=0,1
DI = DREAL(I)
DJ = DREAL(J)

_ XLO(1) = X(1,NB) + DI*SIGNA*XA(1) + DI*SIGNB*XB(1)
® XLO(2) = X(2,NB) + DI*SIGNA*XA(2) + DI*SIGNB*XB(2)
XLO(1) = XLO(1) - X(1,NA)

XLO(2) = XLo(2) - X(2,NA)
DELTA = DSQRT(DOT(XL@,XLO,2))
IF(DELTA.LT.4.0D0*RMAX) GOTO 55

70  CONTINUE

65  CONTINUE

. GOTO 60

55  CONTINUE
NUMEL = NUMEL + 1
IENC1,NUMEL) = NA
IEN(Z,NUMEL) = NB

60  CONTINUE
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100
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993
- 994

998
999

CONTINUE

. INITIALIZE THE HARDENING ARRAY TO PARTICLE COHESION AND

THE CONTACT ARRAY TO ALL PARTICLES IN CONTACT WITH EACH
OTHER (ie ICONCNUMEL)=1).

DO 25 I=1, NUMEL
ALPHA(I)=A
ICON(ID=1

CONTINUE

. LOCALIZE ID ARRAY

DO 40 K=1, NUMEL
DO 30 J=1, 2
NN = IENC3,K)
DO 30 I=1,3
LM(3*(3-1)+I,K) = IDCI,NN)
CONTINUE
CONTINUE

. COMPUTE DIAGONAL ADDRESSES

NSTIFF = 1
IDIAG(1) =1
IF(NEQ.EQ.1) GOTO 100
DO 50 I=2, NEQ
IDIAG(I) = IDIAG(I-1) + I
CONTINUE
NSTIFF = IDIAG(NEQ)

. CALL DRIVER PROGRAM

CALL MACROI(XCELL,YCELL,AUPPER,ALOWER,B,IDIAG)

. PRINT RESULTS

FORMAT(2X,13,9X,314)
FORMAT(/,'ID ARRAY:',/,'PARTICLE',3X, 'GLOBAL EQ. NUMBER')
FORMAT(//,10X,"'X',15X,'Y",14X, 'RADIUS')
FORMAT(F16.8,F16.8,F16.8)
FORMAT( 'NUMBER OF PARTICLES = ',13,/,
'WIDTH OF THE CONTROL VOLUME: XCELL = ',F16.8,/,
'HIEGHT OF THE CONTROL VOLUME: YCELL = ',F16.8,/,
'NORMAL SPRING STIFFNESS = ',EZ20.8,/,
'TANGENTIAL SPRING STIFFNESS = ',E20.8,/,
'PARTICLE COHESION = ',E20.8,/,
"PACTICLE FRICTION ANGLE = ',F16.8,/,
"HARDENING PARAMETER = ',E20.8,/)

> XK XX XX X X

CLOSECUNIT=12)
CLOSE(UNIT=24)




CLOSECUNIT=36)
CLOSE(UNIT=48)
CLOSECUNIT=60)
CLOSE(UNIT=51)

STOP
END




SUBROUTINE MACROI(XCELL,YCELL,AUPPER,ALOWER,B,IDIAG)

. INVERSE PROBLEM DRIVER PROGRAM

aEaXe!

IMPLICIT REAL*8(A-H,0-7Z)
. REMOVE ABOVE CARD FOR SINGLE PRECISION OPERATION

a¥aka

DIMENSION XAOLD(2),XBOLD(2),EPSI(3),EPS(3,1000),DELSIG(3,1000)
DIMENSION EK(6,6),P(6),XA(2),XB(2),DSIG(3),SK(3,3)
DIMENSION AUPPER(1),ALOWER(1),B(1),IDIAG(1)
DIMENSION UNITY(3,3),SI61(3),S162(3),SIGT(3)
COMMON /MACRO / FSIG(3),SIG(3),EP(3)
COMMON /PARTCL/ X(3,1000),NPART,RMIN
COMMON /INFO / IEN(2,20000),1D(3,1000),LM(6,20000),
X NUMEL ,NEQ,NSTIFF
COMMON /DSDATA/ D(3,1000),DD(3,1000),DINC(3,1000),
X DDINC(3,1000)
COMMON /FDATA / FTN(20000),ALPHA(20000),I1CON(20000)
COMMON /ELDATA/ SKN,SKT,A,TANPHI,HP
DATA ZERO,ONE/0.0D0,1.0D0/

CALL CLEARCUNITY,9)
DO 1 I=1, 3
UNITY(I,I)=ONE
1 CONTINUE

. CLEAR MACRO QUANTITIES: STRESS AND STRAIN

laXaKal

CALL CLEAR(FSIG,3)
CALL CLEAR(SIG,3)
CALL CLEARCEP,3)
CALL CLEAR(SIGI,3)
CALL CLEAR(SIG2,3)

. CLEAR MICRO QUANTITIES: TANGENTIAL FORCE, DISPLACEMENT,
AND DISPLACEMENT INCREMENT.

aEakalal

CALL CLEAR(CFTN,NUMEL)
CALL CLEAR(D,3*NPART)
CALL CLEAR(DINC,3*NPART)
CALL ICLEARCICON,NUMEL)

. INITIAL CONTROL VOLUME CONFIGURATION

aNaNel

XAC1)
XA(2)
XB(1)
XB(2)

XCELL
ZERO
ZERO
YCELL

[aXKa]

. ANALYSIS OPTIONS
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OO

ICODE=0 => STRAIN CONTROL
ICODE=1 => STRESS CONTROL
ICODE=2 => 2 TIMESTEPS STRAIN CONTROL; STRESS CONTROL

ICODE = 2
IF(ICODE.EQ.1) GOTO 7000

STRAIN CONTROL

. INPUT MACROSCOPIC STRAIN INCREMENTS (EPS)

ACk-D=eps(1,1) ACK)=eps(1,2)
WRITE(6,980)
WRITE(36,980)
NSTEP = 2
fnmax=0.0d0
CALL CLEAR(EPS,3*NSTEP)
DO 10 I=1, NSTEP
EPS(1,I) = -8.500d-3
EPS(2,I) = -8.500d-3
EPS(3,I) = 1.00d-5

IF(I.GE.2) THEN
EPS(1,I) = -8.600d-3
EPS(2,I) = -8.600d-3
EPS(3,I) = 2.00d-5
ENDIF
10  CONTINUE

. TIME STEP LOOP

DO 1000 NS=1,NSTEP
WRITE(6,982) NS
WRITE(12,982) NS
WRITE(24,982) NS
WRITE(36,982) NS

. UPDATE CONTROL VOLUME CONFIGURATION

DO 15 I=1,3 -
EP(I) = EP(I) + EPS(I,NS)
EPSI(I) = EPS(I,NS)
15  CONTINUE
: DO 150 I=1,2
XAOLD(I)=XA(I)
XBOLD(I)=XB(I)
150 CONTINUE

C .




C.... CALL STRAIN DRIVER PROGRAM
C
CALL MICRO(EPSI,XA,XB,XAOLD,XBOLD,NS,NSTEP,DET,
X AUPPER,ALOWER, B, IDIAG, fnmax)
C
C.... UPDATE TANGENTIAL CONTACT FORCES/CALCULATE MACRO STRESS
C

CALL CLEAR(SIG,3)
DO 2000 N=1,NUMEL
NA = IENC1,N)
NB = IENC2,N)
ITASK = 1
IF(ICODE.EQ.2) ITASK=2
CALL CNTACT(N,NA,NB,P,EK,XA,XB,DET,ITOUCH,ITASK,XAOLD,
X XBOLD, fnmax,nplas)
2000 CONTINUE
C
XAxXB
AREA
S16(1)
S16(2)
SIG(3)

DABS(XAC1L)*XB(2) - XA(2)*XB(1))
XAxXB

SIG(1)/AREA

SIG(2)/AREA

SIG(3)/AREA

IF(ICODE.NE.2) GOTO 4999
XA(1)=XCELL
XA(2)=ZERO
XB(1)=ZERO
XB(2)=YCELL
IF(NS.EQ.1) THEN
CALL MOVE(SIG1,SIG,3)
GOTO 5001 '
ELSE
CALL MOVE(SIGZ,SIG,3)
GOTO 5001
ENDIF

C.... UPDATE COORDINATES OF PARTICLE CENTROIDS

4999 CONTINUE
DO 5000 I=1,NPART

X(1,I) = X(1,I) + DINC(1,I)
X(2,1) = X(2,I) + DINC(2,I)
¢
C.... CHECK FOR IMAGE PARTICLE
C

AA (XB(2)*X(1,I)-XB(1)*X(2,I))/DET

BB = (XAC1)*X(2,I)-XA(2)*X(1,I))/DET
IFCAA.GE.ZERO.AND.AA.LE.ONE.AND.BB.GE.ZERO.AND.BB.LE.ONE)
X GOTO 5000

. CONVERT IMAGE PARTICLE TO REAL

aEaEe]




® IF(AA.LT.ZERO) AA=AA+ONE
IF(AA.GT.ONE) AA=AA-ONE
IF(BB.LT.ZERO) BB=BB+ONE
IF(BB.GT.ONE) BB=BB-ONE
X(1,I) = AA*XA(1) + BB*XB(1)
X(2,I) = AA*XA(2) + BB*XB(2)
5000 CONTINUE

... OUTPUT

a¥ala

5001 CONTINUE
C PRINCIPAL STRESSES
TEMP=DSQRT((SIG(1)-SIG(2))*(SIG(1)-SIG(2))+4.0DO*SIG(3)*SIG(3))
® ‘ PSIG1=-0.50D0*(SIG(1)+SIG(2) + TEMP)
PSIG2=-0.50D0*(SIG(1)+SIG(2) - TEMP)

IFCICODE.EQ.Q) GOTO 5002
WRITE(6,978) -EPS(1,NS),-SIG(1),-EPS(2,NS),-SIG(2),
X -EPS(3,NS),-SIG(3)
WRITE(36,977)
L WRITE(36,978) -EPS(1,NS),-SIG(1),-EPS(2,NS),-SIG(2),
X -EPS(3,NS),-SIG(3)
WRITE(24,990) NS, NPART, XCELL, YCELL
GOTO 825
5002 CONTINUE
_ WRITE(6,978) -EP(1),-SIG(1),-EP(2),-SIG(2),-EP(3),-SIG(3)
Py WRITE(36,977)
: WRITE(36,978) -EP(1),-SIG(1),-EP(2),-SIG(2),-EP(3),-SIG(3)
WRITE(24,990) NS, NPART, XCELL, YCELL
DO 850 I=1, NPART
WRITE(24,994) X(1,I),X(2,I),X(3,I)
850 CONTINUE
WRITE(24,991) 0.0D0, ©.0D0, X(3,I)
(] WRITE(24,991) XAC1), XAC2), X(3,I)
WRITE(24,991) XAC1)+XB(1), XA(2)+XB(2), X(3,I)
WRITE(24,991) XB(1), XB(2), X(3,I)
WRITE(24,991) ©0.0D0, 0.0D0, X(3,I)
825 CONTINUE
IFCNS.EQ.1) WRITE(48,977)
® IF(ICODE.EQ.0) WRITE(48,976) -EP(1),-SIG(1),-EP(2),-SIG(2),
X -EP(3),-SIG(3)
X ,PSIG1,PSIG2
IF(ICODE.EQ.2) WRITE(48,976) -EPS(1,NS),-SIG(1),-EPS(2,NS),
X -SIG(2),-EPS(3,NS),-SIG(3)
X ,PSIGL,PSIG2
C
® 1000 CONTINUE
C
IF(ICODE.EQ.@) RETURN

C
C
C

STRESS CONTROL




sigl=sig(K-1) sig2=sig(K)

eps(i,1)=eps(K-1) eps(i,2)=eps(K)
7000 CONTINUE

WRITE(6,983)

WRITE(36,983)

sl el aYa]

. INPUT MACROSCOPIC STRESS INCREMENTS (DELSIG)
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NSTEP = 900
CALL CLEAR(DELSIG,3*NSTEP)
CALL CLEARCEP,3)
DO 5 I=1, NSTEP
if(i.eq.1 .or. i.eq.2) then
DELSIG(1,I) = -0.981@d+01
DELSIG(2,I) = -0.9810d+01
DELSIG(3,I) = -0.00d+00
else
DELSIG(1,I)
D)
)

-0.50d+00
0.00d+00
0.00d+00

DELSIG(2,I
DELSIG(3,I
endif
5 CONTINUE

nnn

. TIME STEP LOOP

[aXaXal

DO 500 NS=1,NSTEP
WRITE(6, 982) NS
WRITE(12,982) NS
WRITE(24,982) NS
WRITE(36,982) NS

. CONVERGENCE CRITERIA

OO N

ETOL = ZERO
DO 7 I=1, 3
ETOL = ETOL + DELSIG(I,NS)*DELSIG(I,NS)
7 CONTINUE ,
ETOL = 1.0d-7*DSQRT(ETOL)

. UPDATE CONTROL VOLUME CONFIGURATION

aNaXa!

DO 25 I=1, 2
XAOLD(I)=XA(I)
XBOLD(I)=XB(I)

25  CONTINUE

. COMPUTE SIGbar

alalal

DO 20 I=1, 3
FSIG(I) = FSIG(I) + DELSIG(I,NS)
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499

CONTINUE

. ITERATION LOOP

IT=0
CALL CLEAR(EPSI,3)
CONTINUE
DO 90 I=1, 2
XA(I)=XAOLD(I)
XB(I)=XBOLD(I)
CONTINUE
IF(IT.EQ.Q) CALL MOVE(SIG,SIGZ,3)
IF(IT.EQ.Q) GOTO 499

. CALL STRAIN DRIVER PROGRAM

WRITE(6,980)

WRITE(36,980)

WRITE(6,992) EPSI(1),EPSI(2),EPSI(3)
WRITE(36,992) EPSI(1),EPSI(2),EPSI(3)

CALL MICROCEPSI,XA,XB,XAOLD,XBOLD,NS,NSTEP,DET,
X AUPPER,ALOWER, B, IDIAG, fnmax)

WRITE(6,984)

WRITE(36,984)

. UPDATE TANGENTIAL CONTACT FORCES/CALCULATE MACRO STRESS

CALL CLEAR(SIG,3)

DO 35 N=1,NUMEL

NA = IENC1,N)

NB = IEN(2,N)

CALL CNTACT(N,NA,NB,P,EK,XA,XB,DET,ITOUCH,2,XAOLD,
X XBOLD, fnmax,nplas)

CONTINUE

XAxXB = DABS(XA(1)*XB(2) - XA(2)*XB(1))
AREA = XAxXB

SIG(1) = SIG(1)/AREA

SIG(2) = SIG(2)/AREA

SIG(3) = SIG(3)/AREA

CALL MOVE(SIG1,SIGZ,3)
CALL MOVE(SIG2,SIG ,3)

CONTINUE
WRITE(6,996) SIG(1),SIG(2),SIG(3)
WRITE(36,996) SIG(1),SIG(2),SIG(3)
DO 40 I=1, 3

DSIG(I) = FSIG(I) - SIG(I)
CONTINUE

. COMPUTE RESIDUAL




45
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RESID = ZERO
DO 45 I-1, 3

RESID = RESID + DSIG(I)*DSIG(I)
CONTINUE
RESID = DSQRTCRESID)
IFCIT.EQ.0) WRITE(6,981) ETOL
IFCIT.EQ.@) WRITE(12,981) ETOL
IFCIT.EQ.0) WRITE(36,981) ETOL
WRITE(6,995) IT+1, RESID
WRITE(12,995) IT+1, RESID
WRITE(36,995) IT+1, RESID
IF(RESID.LE.ETOL) GOTO 700

. TANGENT OPERATOR

TANGENT OPTIONS FOR THE START OF EACH TIMESTEP:
1.) USE THE CONVERGED TANGENT FROM THE
PREVIOUS TIMESTEP FOR THE FIRST ITERATION.
IF(NS.GE.2 .AND. IT.EQ.@) GOTO 76

2.) USE THE CONVERGED TANGENT FROM THE
PREVIOUS TIMESTEP FOR THE FIRST TWO ITERATIONS.
IF(NS.GE.2 .AND. IT.LE.1) GOTO 76

3.) UPDATE THE TANGENT EVERY OTHER ITERATION.
MDIV = (IT+1)/2
IF(MDIV*2.EQ.(IT+1)) GOTO 76

CALL CLEAR(SK,9)
CALL MOVE(SIGT,SIGZ,3)

. DISCRETE TANGENT OPTIONS

ONOOOOON

(@]

ITAN=0 => TANGENT APPROXIMATED BY THE DIFFERENCE EXPRESSION
IN ORTEGA AND RHEINBOLT (7.1.15) PG. 185.

ITAN=1 => TANGENT APPROXIMATED BY THE DIFFERENCE EXPRESSION
IN ORTEGA AND RHEINBOLT (7.1.16) PG. 186.

ITAN=2 => EXACT TANGENT OPERATOR

ITAN = 0

WRITE(6,985)
WRITE(36,985)
DO 50 J=1, 3

IF(ITAN.EQ.1) GOTO 8000

IF(J.GE.2) CALL MOVE(SIGT,SIG,3)
IF(J.EQ.3) CALL MOVE(SIG,SIG1,3)
DO 61 I=1, 3

EPSI(I) = EPS(I,2)
CONTINUE




o DO 62 K=1, J
DO 63 I=1, 3
EPSI(I) = EPSI(I) + UNITY(I,K)*(EPS(K,1)-EPS(K,2))
63 CONTINUE
62 CONTINUE
GOTO 9000

® 8000  CONTINUE
: DO 60 I=1, 3
EPSI(I) = EPS(I,2) + UNITY(I,J)*CEPS(J,1)-EPS(J,2))
60 CONTINUE

9000 CONTINUE
¢ write(6,*)'] = ',j
write(36,*)'] = ',j
WRITE(6,992) EPSI(1),EPSI(2),EPSI(3)
WRITE(36,992) EPSI(1),EPSI(2),EPSI(3)
IF(J.EQ.3 .AND. ITAN.EQ.Q) GOTO 73
DO 65 I=1, 2
XACI) = XAOLD(CI)
L XB(I) = XBOLD(I)
65 CONTINUE
CALL MICRO(CEPSI,XA,XB,XAOLD,XBOLD,NS,NSTEP,DET,
X AUPPER,ALOWER,B,IDIAG, fnmax)
CALL CLEAR(SIG,3)
DO 71 N=1, NUMEL
® NA = IEN(1,N)
NB = IEN(Z,N)
CALL CNTACT(N,NA,NB,P,EK,XA,XB,DET,ITOUCH,2,XAOLD,
v X XBOLD, fnmax, nplas)
71 CONTINUE

DABS(XACL)*XB(2) - XA(2)*XB(1))
XAxXB
SIG(1) = SIG(1)/AREA
SIG(2) = SIG(2)/AREA
SIG(3) = SIG(3)/AREA
73 CONTINUE
WRITE(6 ,996) SIG(1),SIG(2),SIG(3)
PS WRITE(36,996) SIG(1),SIG(2),SIG(3)
" TEMP = ONE/(CEPS(J,1)-EPS(3,2))
DO 74 1I=1, 3
SK(I,3) = (SIG(I) - SIGT(I))*TEMP
74 CONTINUE
50  CONTINUE
76  continue
o WRITE(6 ,*)'SK: '
WRITE(36,*)'SK: '
do 77 1=1, 3
WRITE(6 ,988)(SK(1,1), J=1,3)
WRITE(36,988)(SK(I,J), J=1,3)
77 continue

XAxXB
e AREA




c write(36,997) dsig(l),dsig(2),dsig(3)
WRITE(6,986)
WRITE(36,986)
K=20
DO 105 J=1, 3

DO 110 I=1, J
K=K+1
AUPPER(K)
ALOWER(CK)
110 CONTINUE
105 CONTINUE

SK(1,3)
SK(3,1)

. FACTORIZE TANGENT OPERATOR

WRITE(36,*)'DIAGONAL AND RHS BEFORE FACTORIZATION:'
DO 235 I=1, 3
WRITE(36,987) I, AUPPER(IDIAG(I)), I, DSIG(I)
235 CONTINUE
CALL NSOLVE(AUPPER,ALOWER,DSIG,IDIAG,3,.TRUE.,.FALSE.)
DO 238 I=1, 3
IF(DABSCAUPPER(IDIAG(I))).LT.1.0D-9)
X WRITE(6,979) I, AUPPER(CIDIAG(I))
IF(DABSCAUPPER(IDIAG(I))).LT.1.0D-9)
X WRITE(12,979) I, AUPPER(IDIAG(I))
IF(DABSCAUPPER(IDIAG(I))).LT.1.0D-9)
X WRITE(36,979) I, AUPPER(IDIAG(I))
238 CONTINUE

O0O00OAO

C
C.... FORWARD REDUCE AND BACK SUBSTITUTE
C

CALL NSOLVE(CAUPPER,ALOWER,DSIG,IDIAG,3,.FALSE.,.TRUE.)
d WRITE(36,*)
c WRITE(36,*)'DIAGONAL AND RHS AFTER FACTORIZATION:'
c DO 236 I-1, 3
C WRITE(36,987) I, AUPPER(IDIAG(I)), I, DSIG(I)
c 236 CONTINUE
DO 70 I=1, 3
EPS(I,1)
EPS(I,2)
EPSI(I)
70 CONTINUE
WRITE(6,992) EPSI(1),EPSI(2),EPSI(3)

EPS(1,2)
EPS(I,2) + DSIG(I)
EPS(I,2)

c WRITE(36,992) EPSI(1),EPSI(2),EPSI(3)
WRITE(6,993) DSIG(1),DSIG(2),DSIG(3)

c WRITE(36,993) DSIG(1),DSIG(2),DSIG(3)
IT=1IT+1

IFCIT.LE.20) GOTO 450
. NO CONVERGENCE

aON O

WRITE(*,100)
WRITE(36,100)
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700

ON

75
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FORMAT(' NO CONVERGENCE AFTER 20 ITERATIONS')
STOP
CONTINUE

. CONVERGENCE

CALL CLEAR(CEPS,6)
Do 75 1=1,3

EP(I) = EP(I) + EPSI(I)
CONTINUE

. UPDATE TANGENTIAL CONTACT FORCES/CALCULATE MACRO STRESS

fnmax=0.0d0
icntact = 0@
iplstic = 0

CALL CLEAR(SIG,3)

DO 200 N=1,NUMEL

NA = IEN(1,N)

NB = IEN(2,N)

nplas = @

CALL CNTACT(N,NA,NB,P,EK,XA,XB,DET,ITOUCH,1,XAOLD
X ,XBOLD, fnmax,nplas)

icntact = icntact + itouch

iplstic = iplstic + nplas

CONTINUE

XAxXB
AREA
SIG(1)
SIG(2)
SIG(3)

DABS(XA(1)*XB(2) - XA(2)*XB(1))
XAxXB

SIG(1)/AREA

SIG(2)/AREA

SIG(3)/AREA

write(6,*)'fnmax = ', fnmax

write(24,*)'fnmax = ',fnmax

write(24,*) "number of contacts = ',icntact
write(24,*) 'number of plastic contacts = ',iplstic

. UPDATE COORDINATES OF PARTICLE CENTROIDS

DO 80 I=1,NPART
X(1,I) = X(1,I) + DINC(1,I)
X(2,I) = X(2,I) + DINC(2,I)

. CHECK FOR IMAGE PARTICLE

AA = (XB(2)*X(1,I)-XB(1)*X(2,I))/DET

BB = (XA(1)*X(2,I)-XA(2)*X(1,I))/DET
IFCAA.GE.ZERO.AND.AA.LE.ONE.AND.BB.GE.ZERO.AND.BB.LE.ONE)
X GOTO 80

. CONVERT IMAGE PARTICLE TO REAL
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C

C

IF(AA.LT.ZERO) AA=AA+ONE

IFCAA.GT.ONE) AA=AA-ONE

IF(BB.LT.ZERO) BB=BB+ONE

IF(BB.GT.ONE) BB=BB-ONE

X(1,I) = AA*XAC1) + BB*XB(1)

X(2,I) = AA*XA(2) + BB*XB(2)
80 CONTINUE

. CHECK FOR LOCALIZATION
CALL LOCALI(CSK,NS)
. OUTPUT

PRINCIPAL STRESSES
TEMP=DSQRT((SIG(1)-SIG(2))*(SIG(1)-SIG(2))+4.0DO*SIG(3)*SIG(3))
PSIG1=-0.50D0*(SIG(1)+SIG(2) + TEMP)
PSIG2=-0.50D0*(SIG(1)+SIG(2) - TEMP)

WRITE(6,978) -EP(1),-SIG(1),-EP(2),-SIG(2),-EP(3),-SIG(3)
WRITE(36,977)

WRITE(36,978) -EP(1),-SIG(1),-EP(2),-SIG(2),-EP(3),-SIG(3)
IFCNS.EQ.1) WRITE(48,977)

WRITE(48,976) -EP(1),-SIG(1),-EP(2),-SIG(2),-EP(3),-SIG(3)
X ,PSIG1,PSIG2

WRITE(24,990) NS, NPART, XCELL, YCELL

DO 85 I=1, NPART

WRITE(24,994) X(1,I),X(2,I),X(3,I)

85  CONTINUE

WRITE(24,991) 0.0D2, 0.0D0, X(3,I)

WRITE(24,991) XAC1), XAC2), X(3,I)

WRITE(24,991) XAC1)+XB(1), XA(2)+XB(2), X(3,I)
WRITE(24,991) XB(1), XB(2), X(3,I)

WRITE(24,991) 0.0D0, 0.0D0, X(3,I)

500 CONTINUE

976 FORMAT(8E16.8)
977 FORMAT('MACROSCOPIC STRESS',/,5X,
X 'EPSI(1)',7X,'SIG(1)',6X, "EPSI(2)',7X, 'SI6(2)’,
X  ©X,'EPSI(3)',7X,'SIG(3)")
978 FORMAT(6E16.8)
979 FORMAT('ZERO ON DIAGONAL-- EQ. #',I3,' DIAG = ',E20.10)

980 FORMAT(//,' ',' STRAIN CONTROL',
X 2X,"' D)

981 FORMAT('CONVERGENCE CRITERION = ',E16.8)

982 FORMAT(//,'TIMESTEP ',I3)

983 FORMAT(///," '," STRESS CONTROL',

X 2X," D)
984 FORMAT(®

985 FORMAT(//,’ '," TANGENT OPERATOR',




X 2X,' "
986 FORMAT('

987 FORMAT('DIAG(',I3,') = ',E20.10,7X,'B(',I3,') = ',E20.10)

988 FORMAT(3F20.10)

990 FORMAT(/,'CONTROL VOLUME CONFIGURATION AT THE END OF TIMESTEP

I3,

X /,13,2F20.14)

991 FORMAT(3F20.10)

992 FORMAT('STRAIN INCREMENT:',/,6X,'EPSI(1)',14X,'EPSI(2)',
X 14X, "EPSI(3)',/,E16.8,5X,E16.8,5X,E16.8)

993 FORMAT('DELTA(STRAIN INCREMENT):',/,6X, 'DEPS(1)',14X, 'DEPS(2)’
X 14X, 'DEPS(3)',/,E16.8,5X,E16.8,5X,E16.8)

994 FORMAT(3F20.10)

995 FORMAT(I2,' STRESS RESIDUAL = ',E16.8)

996 FORMAT('STRESS:',/,6X,'SIG(1)',14X,'SIG(2)',
X 14X, 's16(3)',/,E16.8,5X,E16.8,5X,E16.8)

997 FORMAT('STRESS RESIDUAL VECTOR:',/,6X,'DSIG(1)',14X,'DSIG(2)',
X 14X, 'DSI16(3)',/,E16.8,5X,E16.8,5X,E16.8)

STOP
END




aNale]

OO N

[aEalXa]

aNaNal

(o]

OO N
.

SUBROUTINE MICRO(EPSI,XA,XB,XAOLD,XBOLD,NS,NSTEP,DET,
X AUPPER,ALOWER, B, IDIAG, fnmax)

. STRAIN DRIVEN PROBLEM DRIVER PROGRAM

IMPLICIT REAL*8(A-H,0-Z)

. REMOVE ABOVE CARD FOR SINGLE PRECISION OPERATION

DIMENSION EPSI(3),XAOLD(2),XBOLD(2)

DIMENSION EK(6,6),P(6),XA(2),XB(2)

DIMENSION AUPPER(1),ALOWER(1),B(1),IDIAG(1),BDPL(1000)
COMMON /MACRO / FSIG(3),SIG(3),EP(3)

COMMON /PARTCL/ X(3,1000),NPART,RMIN

COMMON /INFO / IEN(2,20000),ID(3,1000),LM(6,20000),

X NUMEL ,NEQ,NSTIFF
COMMON /DSDATA/ D(3,1000),DD(3,1000),DINC(3,1000),
X DDINC(3,1000)

COMMON /FDATA / FTN(20000),ALPHA(20000) ,ICON(20000)
COMMON /ELDATA/ SKN,SKT,A,TANPHI,HP

DATA ZERO,ONE,ETOL/0.0D0,1.0D0,1.0D-8/

. INITIALIZE Dbar

DO 5 I=1,NPART

DINC(1,I) = EPSI(1)*X(1,I) + EPSI(3)*X(2,I)
DINC(2,I) = EPSI(3)*X(1,I) + EPSI(2)*X(2,I)
DINC(3,I) = 0.0D0

CONTINUE

TEMP = (ONE+EPSI(1))*XA(1) + EPSI(3)*XA(2)
XA(2) = EPSI(3)*XA(1) + (ONE+EPSI(2))*XA(2)
XA(1) = TEMP

TEMP = (ONE+EPSI(1))*XB(1) + EPSI(3)*XB(2)
XB(2) = EPSI(3)*XB(1) + (ONE+EPSI(2))*XB(2)
XB(1) = TEMP :

DET = XA(1)*XB(2)-XB(1)*XA(2)

. PSEUDO TIME STEP LOOP

DT = 1.0D0

DO 400 NT=1, 1
WRITE(6,980) NT
WRITE(12,980) NT
WRITE(24,980) NT

CALL CLEAR(DDINC,3*NPART)

. NEWTON ITERATION LOOP

ITER = 0
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CONTINUE

ITER = ITER + 1
WRITE(6,996) ITER
WRITE(12,996) ITER

CONTINUE
ALPHK = ONE

CONTINUE

CALL CLEARCAUPPER,NSTIFF)
CALL CLEARCALOWER,NSTIFF)
CALL CLEAR(B,NEQ)

. FORM RHS VECTOR AND TANGENT OPERATOR

X

23

iflag = @
DO 15 N=1,NUMEL
CALL CLEAR(P,6)
CALL CLEAR(EK,36)
NA = IENCL,N)
NB = IEN(2,N)
CALL CNTACT(N,NA,NB,P,EK,XA,XB,DET,ITOUCH,ITASK,XAOLD,
XBOLD, fnmax,nplas)

if(itouch.eq.1) then

if(iflag.eq.1) goto 104

iflag = 1

write(12,*) 'n = ',n

do 303 ii=1,6

write(12,223) (ek(ii,jj),jj=1,6), p(ii)
format(7f10.3)

222 format(6f10.3)

303

continue
endif

104 continue

15

IFCITOUCH.EQ.Q) GOTO 15
CALL ADDSTF(AUPPER,B,ALOWER,EK,P,IDIAG,LM(1,N))
CONTINUE

. PARABOLIC REGULARIZATION

IFCITER.EQ.1) WRITE(6,*)'*** NO PSEUDO TIMESTEPPING ***'
GOTO 35

IF(ITER.EQ.1) GOTO 35

DO 30 N=1, NPART

CALL PAREG(N,AUPPER,B,ALOWER,IDIAG,DT)

CONTINUE

CONTINUE

. COMPUTE NORM OF RESIDUAL AND CHECK CONVERGENCE

RESID1 = DSQRT(DOT(B,B,NEQ))
IFCITER.EQ.1) TOLER=RESIDI1*ETOL
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. STEPLENGTH DETERMINATION/LINE SEARCH

FOR NO LINE SEARCH GOTO 705

go to 705

continue

IF(RESID1.LT.RESID@.OR.ITER.EQ.1) THEN
IFCITER.EQ.1) GOTO 7@5

WRITE(12,989)

DO 22 J=1, NPART

WRITE(12, 985) J, (DDINC(I,D), I=1,3), (DINC(I,)),I=1,3)
. CONTINUE

GOTO 705

ENDIF
ALPHK = 0. SGDQ*ALPHK*ALPHK*RESIDS/(RESIDl+RESIDS*ALPHK RESIDO)
WRITE(*,777) ALPHK
WRITE(36,777) ALPHK

FORMAT(' ALPHK = ',F20.10)

DO 17 I=1,3

DO 16 J=1,NPART

K = ID(1,J)

IF(K.GT.Q) DINC(I,J))=D(I,J)-ALPHK*BDPL(K)
IF(K.GT.0) DDINC(I,J)=DD(I,J)-ALPHK*BDPL(K)
CONTINUE

CONTINUE

GO TO 702

CONTINUE

IFCITER.EQ.1) WRITE(6,981) TOLER
IFCITER.EQ.1) WRITE(36,981) TOLER
WRITE(6,995) ITER, RESID1

- WRITE(36,995) ITER, RESID1

C....

235°

IF(RESID1.LT.TOLER.OR.RESID1.LT.1.0D-7) GOTO 400
RESIDO = RESID1 :
RESIDS = RESID@

. FACTORIZE TANGENT OPERATOR

WRITE(12,*)'DIAGONAL AND RHS BEFORE FACTORIZATION:'
DO 235 I=1, NEQ

WRITE(12,987) I, AUPPER(IDIAG(I)), I, B(I)
CONTINUE :
CALL NSOLVE(AUPPER,ALOWER,B,IDIAG,NEQ,.TRUE.,.FALSE.)
DO 238 I=1, NEQ

IF(DABSCAUPPER(IDIAG(I))).LT.1.0D-9)

X WRITE(6,979) I, AUPPER(IDIAG(I))
IF(DABSCAUPPER(IDIAG(I))).LT.1.0D-9)

X WRITE(12,979) I, AUPPER(IDIAG(I))
IF(DABSCAUPPER(IDIAG(I))).LT.1.0D-9)

X WRITE(36,979) I, AUPPER(IDIAG(I))

238 (CONTINUE

FORWARD REDUCE AND BACK SUBSTITUTE
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CALL NSOLVE(CAUPPER,ALOWER,B,IDIAG,NEQ,.FALSE.,.TRUE.)
WRITE(12,*)
WRITEC12,*)'DIAGONAL AND RHS AFTER FACTORIZATION:'
DO 236 I=i, NEQ

WRITE(12,987) I, AUPPER(IDIAG(I)), I, B(I)
CONTINUE

. INTERMEDIATE UPDATE FOR DISPLACEMENT INCREMENT

CALL MOVE(D,DINC,3*NPART)

CALL MOVE(DD,DDINC,3*NPART)

CALL MOVE(BDPL,B,NEQ)

Do 25 1-1,3

DO 20 J=1,NPART

K =1ID(I,))

IF(K.GT.@) DINC(I,3)=DINC(I,J])-BC(K)
IF(K.GT.@) DDINC(I,J)=DDINC(I,J)-B(K)
CONTINUE

CONTINUE

IF (ITER.LT.45) GOTO 10

. NO CONVERGENCE

WRITE(*,100)

WRITE(36,100)

FORMAT(' NO CONVERGENCE AFTER 45 ITERATIONS.')
STOP :

CONTINUE

FORMAT('ZERO ON DIAGONAL-- EQ. #',I3,' DIAG = ',E20.10)

FORMAT( *PSEUDO TIMESTEP ',I3)

FORMAT( ' CONVERGENCE CRITERION = ',E16.8)

FORMAT(I3,2X,3E12.4,"' 1',3E12.4)

FORMAT( 'DIAG(',I3,') = ',E20.10,7X,'B(',13,') = ',E20.10)
FORMAT(/, 'PRT.#',2X, 'D(DINC(1))',2X, 'D(DINC(2))"',2X, 'D(DINC(3))",

X 1X,'1',4X, "DINC(1)",5X, 'DINC(2)",5X, 'DINC(3)")

995
996

FORMAT(I2,' RESIDUAL
FORMAT(//, ' ITERATION

',E16.8)
',12)

RETURN
END
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SUBROUTINE CNTACT(N,NA,NB,P,EK,XA,XB,DET,ITOUCH,ITASK,
X XAOLD, XBOLD, fnmax, nplas)

PROGRAM TO FORM ELEMENT FORCE VECTOR AND STIFFNESS MATRIX
IMPLICIT REAL*8(A-H,0-2)

. REMOVE ABOVE CARD FOR SINGLE PRECISION OPERATION

DIMENSION P(1),EK(6,1),XA(1),XB(1),XA0LD(1),XBOLD(1)
DIMENSION XN1(2,2),XL0(2),XL1(2),XNB(2)
DIMENSION ¢(2,2),B(2,4),CB(2,4)
COMMON /MACRO / FSIG(3),SIG(3),EP(3)
COMMON /PARTCL/ X(3,1000),NPART,RMIN
COMMON /DSDATA/ D(3,1000),DD(3,1000),DINC(3,1000),
X DDINC(3,1000)
COMMON /FDATA / FTN(20000),ALPHA(20000),ICON(20000)
COMMON /ELDATA/ SKN,SKT,A,TANPHI,HP
DATA ZERO,HALF,ONE/@.0D0,0.50D0,1.0D0/

. ITASK OPTIONS:

ITASK=0 => CALCULATE ELEMENT CONTRIBUTION TO MICRO STIFFNESS
ITASK=1 => UPDATE MACRO STRESS AND CONTACT FORCES
ITASK=2 => CALCULATE MACRO STRESS WITHOUT ANY UPDATES

. IOPT OPTIONS: :

IOPT=0 => ALL PARTICLE IN CONTACT WITH EACH OTHER AT Tn
IOPT=1 => NEW CONTACTS FORM AT Tn+1.

IOPT = 0

RA = X(3,NA)/100.0D0

RB = X(3,NB)/100.0D0
RPLUSR = (RA + RB)/100.0D0

RA = X(3,NA)

RB = X(3,NB)

RPLUSR = (RA + RB)

XN1(1,1) = X(1,NA) + DINC(1,NA)
XN1(2,1) = X(2,NA) + DINC(2,NA)
XN1(1,2) = X(1,NB) + DINC(1,NB)

XN1(2,2) = X(2,NB) + DINC(Z,NB)

THETAA = DINC(3,NA)
THETAB = DINC(3,NB)

. CHECK REAL AND IMAGE PARTICLES

XL1(1) = XN1(1,2) - XN1(1,1)
XL1(2) = XN1(2,2) - XN1(2,1)
AA = (XB(1)*XL1(2)-XB(2)*XL1(1))/DET
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BB = (XAC2)*XL1(1)-XA(1)*XL1(2))/DET
SIGNA = ZERO

IFCAA.NE.ZERO) SIGNA=AA/DABS(AA)
SIGNB = ZERO

IF(BB.NE.ZERO) SIGNB=BB/DABS(BB)

ITOUCH = @

DO 40 I=0,1

DO 35 J=0,1

DI = DREAL(I)

D] = DREAL(J)

XNB(1) = XN1(1,2) + DI*SIGNA*XA(1) + DI*SIGNB*XB(1)

XNB(2) = XN1(2,2) + DI*SIGNA*XA(2) + DI*SIGNB*XB(2)
XLO(1) = X(1,NB) + DI*SIGNA*XAOLD(1) + DJI*SIGNB*XBOLD(1)
XLO(2) = X(2,NB) + DI*SIGNA*XAOLD(2) + DI*SIGNB*XBOLD(2)

. BRANCH VECTORS

XL1(1) = XNB(1) - XN1(1,1)
XL1(2) = XNB(2) - XN1(2,1)
XLO(1) = XLe(1) - X(1,NA)
XLO(2) = XLO(2) - X(2,NA)
DELTA® = DSQRT(DOT(XL®,XL0,2))
DELTA1 = DSQRT(DOT(XL1,XL1,2))

. CHECK CONTACT

35
40

DELTA = RPLUSR - DELTAl
IF(DELTA.GT.ZERO) GOTO 50
CONTINUE

CONTINUE

. NO CONTACT

IFCITASK.GE.®) RETURN
ICONCN) 0

FTNCN) ZERO
ALPHACN) = A

RETURN

. CONTACT

CONTINUE

IF(NA.EQ.7 .OR. NB.EQ.7) WRITE(60Q,*)' NA = ',NA,' NB = ',NB,DELTA
write(36,*)'CONTACT BETWEEN PARTICLES ',NA,' AND ',NB, DELTA
ITOUCH = 1

EPS1 = 0.1DO*RMIN
HEPS = ONE
DHEPS = ZERO

IF(DELTA.LT.EPS1) HEPS=DELTA/EPS1
IF(DELTA.LT.EPS1) DHEPS=ONE/EPS1
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. CONTACT STIFFNESS

PI=DATAN(1.0D0)*4.0D0

E (N/amr2)

E = 5.00d4

NU = 0.20D0

R = 1.0D00/(1.0Dd/RA + 1.0D0/RB)

Po = 3.0d0

TEMP = RA*RB*PI*E/(4.0DO*R*(1.0D2-NU*NU)*Po)

SKN = PI*E/(4.0D0*(1.0D2-NU*NU)*(DLOG(TEMP)+1.0D0))
SKT = SKN '

. NORMALIZE BRANCH VECTORS

55

DO 55 I=1,2

XLO(I) = XLO(I)/DELTAQ
XL1(I) = XL1(I)/DELTA1
CONTINUE

. ROTATION ANGLE

THETAC = DASINCXLO(1)*XL1(2) - XL@(2)*XL1(1))
WRITE(12,*)'THETA C = ', THETAC

. NORMAL CONTACT FORCE

FN = -HEPS*SKN*DELTA

. TANGENTIAL CONTACT FORCE

GAMMA RA*(THETAC-THETAA) + RB*(THETAC-THETAB)
FTRIAL = FTN(N) + HEPS*SKT*GAMMA

YIELD = ALPHA(CN) - FN*TANPHI
WRITE(12,*)'FTRIAL = ',FTRIAL
WRITE(12,*)'YIELD = ',YIELD

IFCIOPT.EQ.1 .AND.ICON(N).EQ.®) THEN

GPLAS = ZERO

FT = FTRIAL

C(1,1) = -SKN*(HEPS+DELTA*DHEPS)
€(1,2) = ZERO

€(2,1) = ZERO
€(2,2) = ZERO

ENDIF
IF(DABS(CFTRIAL).GT.YIELD) GOTO 70

. ELASTIC PROCESS; C = LOCAL STRESS-STRAIN MATRIX

WRITE(12,*)'ELASTIC PROCESS®
write(*,*) ‘elastic process’
nplas =0
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70

90

102

GPLAS = ZERO

FT = FTRIAL

€(1,1) = -SKN*(HEPS+DELTA*DHEPS)
C€(1,2) = ZERO

€(2,1) = SKT*GAMMA*DHEPS

C(2,2) = HEPS*SKT
WRITE(12,*)'GAMMA = ',GAMMA
WRITE(12,999)N,NA,NB,FT,FN

GO TO 90

. PLASTIC PROCESS; C = LOCAL STRESS-STRAIN MATRIX

CONTINUE

nplas =1

if(itask.eq.1) WRITE(24,*)'PLASTIC PROCESS'
write(*,*) 'plastic process’

SIGN = FTRIAL/DABS(FTRIAL)

GPLAS = SIGN*(DABS(FTRIAL)-YIELD)/(HEPS*SKT+HP)
FT = FTRIAL - HEPS*SKT*GPLAS

TEMP = ONE + HP/(SKT*HEPS)

C(1,1) = -SKN*(HEPS+DELTA*DHEPS)

C€(1,2) = ZERO

C€(2,1) = HP*DHEPS*(GAMMA-GPLAS)/HEPS
X +SIGN*SKN*TANPHI*(HEPS+DELTA*DHEPS)

€(2,1) = C(2,1)/TEMP

C€(2,2) = HEPS*SKT*(ONE - ONE/TEMP)
WRITE(12,*)'SIGN = ',SIGN
WRITE(12,*)'GAMMA = ',GAMMA
WRITE(12,*)'PLASTIC GAMMA
WRITE(12,*)'ELASTIC GAMMA
WRITE(12,999)N,NA,NB,FT,FN

',gplas
' ,gamma-gplas

. UPDATE VARIABLES

CONTINUE

IF(ITASK.EQ.Q) GOTO 100

write(*,102)

format(' i am here at update...')
IF(IOPT.EQ.1 .AND. ICON(N).EQ.Q) FT = ZERO
FX = XL1C(1)*FN - XL1(2)*FT

FY = XL1(2)*FN + XL1(L)*FT

SIG(1) = SIG(1) + FX*XL1(1)*DELTA1
SIG(2) = SIG(2) + FY*XL1(2)*DELTA1
SIG(3) = SIG(3) + 0.50D@*DELTALI*(FX*XL1(2)+FY*XL1(1))
IFCITASK.EQ.1) THEN
ICON(N) = 1
FTNCN) = FT
ALPHACN) = ALPHACN)+HP*SIGN*GPLAS

WRITE(24,505) NA,NB,FX,FY,FT,FN
R=1.0D0/(1.0D0/RA + 1.0D@/RB)
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if

RE
ENDIF

=2.0d0*E/(1.0d0-nu*nu)
=8.0*fn*r/3.14160d0/e
=a*a/r

rite(24,")'a/R =", a
(dabs(fn).gt. fnmax)fnmax=dabs(fn)
TURN

IFCITASK.EQ.2) RETURN
505 FORMAT(' ELEM.',I3,'-',13,' FX =',F10.5,
X

' FY =',F10.5,"' FT =',E12.4,' FN =',E12.4)

RETURN

. ASSEM

CONTI
P(1)
P(2)
P(3)
P(4)
P(5)
P(6)

.B=S

B(1,1

B(1,2
B(1,3

B(1,4

TANC
SECC

B(2,1
B(2,2
B(2,3)

BLE INTERNAL FORCE VECTOR

NUE
= XLI(I)*FN - XL1(2)*FT
= XL1(2)*FN + XL1(1)*FT
RA*FT
-P(1)
-P(2)
RB*FT

TRAIN/DISPLACEMENT MATRIX

XL1(D)

XL1(2)

ZERO

ZERO
TAN(THETAC)/DELTAL
NE/(DCOSCTHETAC)*DELTA1)
(XLL(1)*TANC + XL@(2)*SECC)O*RPLUSR
(XL1(2)*TANC - XL@(1)*SECC)*RPLUSR
-RA .

(AN I | IR A A 4
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B(2,4) = -RB
WRITE(12,*)'B’
DO 112 I=1, 2
WRITE(12,994) (B(1,)), J=1, 4)
CONTINUE

. (B =

DISPLACEMENT GRADIENT OF LOCAL FORCE VECTOR

DO 110 I=1,2
DO 110 J=1,4

CB(I,
CONTI

J) = C(1,1)*B(1,3) + C(1,2)*B(2,D)
NUE

WRITE(12,*)'(B'
DO 111 I=1, 2

WRITE(12,994) (CB(I,J), J=1, 4)
CONTINUE

. DISPLACEMENT GRADIENT OF UNIT NORMAL




o SL11 = (XL1(1)*XL1(1)-ONE)/DELTA1
SL12 = XL1(2)*XL1(1)/DELTA1
SL22 = (XL1(2)*XL1(2)-ONE)/DELTA1

. C = DISPLACEMENT GRADIENT OF GLOBAL FORCE VECTOR

a¥ala

1,1
L €(1,2)
2.1
€(2.2)

XL1(1)*CB(1,1) - XL1(2)*CB(2,1) + SLI1*FN - SL12*FT
XL1(1)*CB(1,2) - XL1(2)*CB(2,2) + SL1Z2*FN - SL22*FT
XL1(2)*CB(1,1) + XL1(1)*CB(2,1) + SL12*¥FN + SL11*FT
XL1(2)*CB(1,2) + XL1(1)*CB(2,2) + SL22*FN + SL12*FT

. ELEMENT STIFFNESS MATRIX

aXale

o DO 120 I=1,2
DO 120 J=1,2
EKCI ,J D
EK(I+3,] )
EKCI ,J+3)
EK(I+3,3+3)
120 CONTINUE

EKCI ,J )+ C1T,D)
EK(I+3,3 ) - C({1,D)
EKC(I ,3+3) - C(1,D)
EK(I+3,3+3) + C(1,))

. C = ROTATION GRADIENT OF GLOBAL FORCE VECTOR

aEakal

c(1,D)
1,2
€(2,1)

DO 130 I=1,2 -

EKCI ,3) = EKCI ,3) + C(I,1)

EK(I+3,3) = EK(I+3,3) - €(I,1)

EKCI ,6) = EKCI ,6) + C(I,2)

EK(I+3,6) = EK(I+3,6) - C(I,2)
3

= XL1(1)*CB(1,3) - XL1(2)*CB(2,3)
= XL1(1)*CB(1,4) - XL1(2)*CB(2,4)
= XL1(2)*CB(1,3) + XL1(1)*CB(2,3)
= XL1(2)*CB(1,4) + XL1(1)*CB(2,4)

] EK(3,I EK(3,I ) + RA*(B(2,I)
EK(3,I+ EK(3,I+3) - RA*CB(Z,I)
EK(6,I EK(6,I ) + RB*CB(2,I)
EK(6,I+3 EK(6,I+3) - RB*CB(2,I)
130 CONTINUE

EK(3,3)
i EK(3,6)
EK(6,3)
EK(6,6)

)
),
)
)
)
)

K(3,3) + RA*(B(2,3)
K(3,6) + RA*CB(2,4)
K(6,3) + RB*CB(2,3)
K(6,6) + RB*CB(2,4)

mmmm

WRITE(12,*)'STIFFNESS MATRIX'
DO 73 I=1, 6
WRITE(12,996)(EK(I,]), J=1, 6)
73 CONTINUE
WRITE(12,*)'ELEMENT INTERNAL FORCE VECTOR'
DO 74 I=1, © :
WRITE(12,995) P(I)
74  CONTINUE

C
c
C
c
C
c
c
c
d




994
995
996
999

X
X

FORMAT(4F14.6)

FORMAT(F12.4)

FORMAT(6F12.4)

FORMAT('ELEMENT NUMBER ',I5,"' CONNECTING PARTICLES *,I3,
" 'AND ',I3,/, TANGENTIAL FORCE = ',E16.8,/,
"NORMAL FORCE = ',E16.8,/)

RETURN
END




SUBROUTINE LOCALI(C,NS)
. INVERSE PROBLEM DRIVER PROGRAM

a¥aXa]

IMPLICIT REAL*8(A-H,0-Z)

. REMOVE ABOVE CARD FOR SINGLE PRECISION OPERATION

Ao

DIMENSION C(3,3),X(3)
DATA ZERO,ONE/0.0DQ,1.0D0/

HALF
THIRD
RAD

1.0D0/2.0D0
1.0D0/3.0D0
4.0DO*DATAN(1.0D0)/180.0D0

. CALCULATE THE DETERMINATE OF THE ACOUSTIC TENSOR.

AQ, A1, A2, A3, AND A4 ARE THE COEFFICIENTS OF THE

QUARTIC EXPRESSION DEFINING THE LOCALIZATION CONDITION.
FCX) = A4 X¥*¥4 + A3 X**3 + A2 X**2 + A1 X + AD = 0

WHERE X=TAN(THETA), THETA DEFINES THE ORIENTATION OF

THE SHEAR BAND.

AN OOOMNN

AQ
Al
X
A2
X
A3
X
A4
ad
al
a2
a3
a4

€(1,1)*C(3,3) - C(1,3)*C(3,1)
C(1,1)*C(3,2) + €(1,1)*C(2,3)
C(1:3)*C(2’1) - C(1:2)*CC3,1)
C(1,1)*C(2,2) + C(1,3)*C(3,2) + C(3,1)*C(2,3)
C(1,3)*C(2,2) + €(3,1)*C(2,2)
C(1,2)*C(2,3) - C(372)*c(2!1)
c(3’3)*c(2s2) - C(Z)B)*C(3!Z)
1.0d0

-240.0334830d0

1.0d0

-10.0d0o

1.0d0

oo e o o

. FIND THE MINIMA OF THE LOCALIZATION CONDITION. THE
MINIMA OCCURS AT THE ROOTS OF THE DERIVATIVE OF THE
LOCALIZATION CONDITION -- A CUBIC EQUATION.

F'(X) = X**¥3 + PX**2 + QX+ R =0

aF¥aXalakakaXeNaNala e

A3/A4%*3.0D0/4.0D0
A2/A4/2.0D0
A1/A4/4.0D0

p
Q
R

. FIND THE ROOTS OF F'(X).

OO

A
B

(3.0D0*Q - P*P)*THIRD
(2.0DO*P*P*P - 9.0D0*P*Q + 27.0DO*R)/27.0D0




QQ = B*B/4.0D0 + A*A*A/27.0D0
IF(DABS(QQ).LT.1.0D-8) QQ = ZERO
write(6,*) 'QQ = ',qq

. ANALYSIS OPTIONS
QQ>0 => ONE REAL ROOT AND TWO CONJUGATE COMPLEX ROOTS;
QQ=0 => THREE REAL ROOTS OF WHICH TWO AT LEAST TWO ARE EQUAL;
QQ<® => THREE REAL AND UNEQUAL ROOTS.

. NOTE THE CHANGE IN VARIABLES Y = X - P/3.

a¥aNalalalaXaNals]

TEMP = P*THIRD

. COMPUTE ONLY THE REAL PARTS OF ALL THE ROOTS. NOTE THAT
THE COMPLEX ROOTS WILL NOT BE USED IN THE LOCALIZATION
ANALYSIS BUT THEIR REAL PARTS WILL BE CALCULATED ANYWAYS.

. FOR QQ>0 OR QQ=0
IF(QQ.LT.ZERO) GOTO 500

[aXaXaXakaXa!

[aNe]

. FOR QQ<@
TEMPZ = ONE
TEMP3 = -HALF*B + DSQRT(QQ)
IF(TEMP3.LT.ZERO) TEMPZ = -ONE
AA = TEMP2*(DABS(TEMP3))**THIRD
TEMP2 = ONE
TEMP3 = -HALF*B - DSQRT(QQ)
IF(TEMP3.LT.ZERO) TEMPZ = -ONE
BB = TEMP2*(DABS(TEMP3))**THIRD
X(1) = AA + BB - TEMP

X(2) - -(AA + BB)/2.0D0 - TEMP
X(3) = X(2) :
GOTO 1000

500 CONTINUE
THETA = DACOS(-HALF*B/DSQRT(DABS(-A*THIRD*A*THIRD*A*THIRD)))
TEMPZ = 2.0D@*DSQRT(DABS(-THIRD*A))
X(1) = TEMP2*DCOS(THETA*THIRD) - TEMP
X(2) =-TEMP2*DCOS(THETA*THIRD + 60@.0D0*RAD) - TEMP
X(3) =-TEMP2*DCOS(THETA*THIRD - 60.0DO*RAD) - TEMP

1000 CONTINUE

. FIND THE MINIMIA OF THE LOCALIZATION FUNCTION USING
ONLY THE REAL ROOTS OF THE CUBIC EQUATION.

aXalaka!

FMIN = 1.0D50
N=3
IFCDABS(QQ).LT.1.0D-8) N = 2
IF(QQ.GT.ZERO) N =1
DO 5 I=1, N
F = A4¥XCI)*XCI)*XCI)*X(I) + A3*XCID*X(I)*X(ID
X + A2*¥X(I)*X(I) + A1*X(I) + A0




aNakKea!

IFCF.GT.FMIN) GOTO 5
FMIN = F
XMIN = X(I)

5 CONTINUE

. OUTPUT

IF(FMIN.LT.1.0D-8) WRITE(36,*)'LOCALIZATION'
IFCFMIN.LT.1.0D-8) WRITE(C 6,*)'LOCALIZATION'
WRITE(36,990)N, FMIN, XMIN
WRITEC 6,990)N, FMIN, XMIN
WRITEC 6,993) N
WRITE(36,*)A4, A3, A2, A1, AQ
IF(NS.EQ.1) WRITE(60,991)
WRITE(60,992) NS, FMIN, N
WRITE(36,*) 'ROOTS: '
WRITEC36,*) X(1), X(2), X(3)
990 FORMAT('NUM. OF REAL ROOTS = ',I1,/,
X 'LOCALIZATION FUNCTION MINIMA = ',E16.8,/,
X "TANCTHETA) AT MINIMA = ',E16.8)
991 FORMAT('LOCALIZATION FUNC. FOR EACH TIMESTEP ',
X "AND NUM. OF REAL ROOTS:',/,'TIMESTEP',3X,'LOCAL. FUNCT.',3X,
X 'NUM. REAL ROOTS')
992 FORMAT(I3,5X,E20.10,5X,I2)
993 FORMAT('NUM. OF REAL ROOTS = ',I1)

RETURN
END
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200

210

SUBROUTINE PAREG(N,AUPPER,B,ALOWER,IDIAG,DT)

PROGRAM TO FORM PARTICLE FORCE VECTOR AND STIFFNESS MATRIX

RESULTING FROM THE DRAG/VISCOUS FORCE.
IMPLICIT REAL*8(A-H,0-2)

. REMOVE ABOVE CARD FOR SINGLE PRECISION OPERATION

DIMENSION AUPPER(1),B(1),ALONER(1),IDIAG(1)
COMMON /PARTCL/ X(3,1000),NPART,RMIN
COMMON /INFO / IEN(2,20000),ID(3,1000),LM(6,20000),

X NUMEL ,NEQ,NSTIFF
COMMON /DSDATA/ D(3,1000),DD(3,1000),DINC(3,1000),
X DDINC(3,1000)
DATA ZERO,TWO/0.0D@,2.0D0/
DAMP =-1.0D2
DAMP = 0.0D0
R = X(3,N)
DMAG = DDINC(1,N)*DDINC(1,N) + DDINC(2,N)*DDINC(Z,N)

DRT DSQRT(DMAG)
write(12,*) n

" write(12,997) drt
IF(DRT.LT.1.0D-8) GOTO 300

RDAMP = R*DAMP*DRT/(DT*DT)

DO 200 I=1, 2
K = ID(I,N)
IF(K.EQ.Q) GOTO 200
VISC = RDAMP*DDINC(I,N)
B(K) = B(K) + VISC '
write(12,998) i, visc
CONTINUE

RDAMP = RDAMP/(DRT*DRT)

K = ID(1,N)

IF(K.EQ.Q) GOTO 210

J = IDIAGCK)

STF = RDAMP*(DDINC(1,N)*DDINC(1,N) + DMAG)
write(12,996) 1, 1, stf

AUPPER(J) = AUPPER(J) + STF

ALOWER(J) = ALOWER(J) + STF

CONTINUE

K = ID(Z2,N)

IF(K.EQ.Q) GOTO 220

J = IDIAG(K)

STF = RDAMP*(DDINC(2,N)*DDINC(2,N) + DMAG)




C

220
300

996
997
998
999

write(12,996) 2, 2, stf
AUPPER(J) = AUPPER(J) + STF
ALOWER(J) = ALOWER(J) + STF

STF = RDAMP*(DDINC(1,N)*DDINC(2,N))
write(12,996) 1, 2, stf
AUPPER(J-1) = AUPPER(J-1) + STF
ALOWER(J-1) = ALOWER(J-1) + STF
CONTINUE

CONTINUE

FORMAT('STF(',I1,',',I11,') = ',E16.8)
FORMAT(' | Idelta(delta D)II = ',E16.8)
FORMAT('DOF ',I1,' RHS = ',E16.8)
FORMAT( 'PARTICLE NUMBER ',I3)

RETURN
END
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SUBROUTINE ADDSTF(A,B,C,S,P,IDIAG,LM)

ADDS ELEMENT STIFFNESS AND FORCE TO THE GLOBAL ARRAYS.

[N a

C

20
10

IMPLICIT REAL*8(A-H,0-2)

. REMOVE ABOVE CARD FOR SINGLE PRECISION OPERATION

DIMENSION A(1),B(1),C(1),IDIAG(1)
DIMENSION S(6,1),P(1),LM(1)

DO 10 J=1, 6
K=LM(J)
IF(K.EQ.0) GOTO 10
B(K)=B(K)+P(J)
L=IDIAG(K)-K
DO 20 I=1, ©
M=LM(I)
IF(M.GT.K .OR. M.EQ.0) GOTO 20
M=L+M
AM)=A(M)+5(T1,3)
CM)=C(M)+S(3,I)
CONTINUE
CONTINUE

RETURN
END
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SUBROUTINE NSOLVE(CA,C,B,IDIAG,NEQ,FACT,BACK)

C
C.... PROGRAM TO PERFORM (A/C)=L*D*U FACTORIZATION AND/OR
C BACKSUBSTITUTION OF AN UNSYMMETRIC SYSTEM OF EQUATIONS
C A(NA) = UPPER TRIANGULAR COEFFICIENT MATRIX
C STORED IN COLUMN FORM
C C(NA) = LONER TRIANGULAR COEFFICIENT MATRIX
C STORED IN COLUMN FORM
C B(NEQ) = RIGHT SIDE VECTORCAFTER BACKSUBSTITION,
C IT CONTAINS THE SOLUTION VECTOR.)
C IDIAGCNEQ) = ADDRESSES OF DIAGONAL TERM IN A(NA)
C NEQ = NUMBER OF EQUATIONS
C FACT = .TRUE. , FACTORA / C
C .FALSE. , DO NOT FACTOR A / C
C BACK = .TRUE. , FORWARD REDUCE B(NEQ) AND BACKSUBSTITUTE
C .FALSE. , DO NOT FORWARD REDUCE B(NEQ) OR
C BACKSUBTITUTE
C
IMPLICIT REAL*8(A-H,0-Z)
REAL*8 DOT
C
C.... REMOVE ABOVE CARD FOR SINGLE-PRECISION OPERATION
C
LOGICAL FACT,BACK
DIMENSION A(1),B(1),C(1),IDIAG(1)
C
C.... FACTOR A TO UT*D*U,REDUCE B TO Y
C
JR=0
DO 10 J=1,NEQ
JD=IDIAG(I)
JH=JD-JR
IF(JH.LE.1) GOTO 10
NS=J+1-JH
NE=J-1
IF(.NOT.FACT) GOTO 20
K=JR+1
1D=0
C .
C.... REDUCE ALL EQUATIONS EXCEPT DIAGONAL
C
o DO 3@ I=NS,NE
IR=ID
ID=IDIAG(I)

NT=MINO(ID-IR-1,I-NS)
IF(NT.EQ.0) GOTO 40
ACK)=ACK)- DOTCACK-NT),C(ID-NT),NT)
C(K)=C(K)- DOT(CCK-NT),ACID-NT),NT)
40 IFCACID).NE.Q.) C(K)=C(K)/A(ID)
30 K=K+1

c .
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. REDUCE DIAGONAL TERM

A(ID)=A(ID)- DOTCACIR+1),C(IR+1),JIH-1)

. FORWARD REDUCE THE R.H.S.

20

IF(BACK) B(3)=B(J)-DOT(C(IR+1),B(NS),JH-1)
JR=JD
IF(.NOT.BACK) RETURN

. BACKSUBSTITUTION

50

J=NEQ

JD=IDIAG(J)

IFCA(3ID).NE.Q.) B(3)=B(I)/A(ID)
IF(NEQ.EQ.1) RETURN

D=B(3)

J=J-1

JR=IDIAG(I)

IF(ID-JR.LE.1) GOTO 60
M=J-JD+JR+2

K=JR-M+1

DO 70 I=M,J]

B(I)=B(I)-ACI+K)*D

JD=3R

IFCACID).NE.Q.) B(J)=B(J)/A(ID)
IF(J.GT.1) GOTO 50

RETURN
END
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10

SUBROUTINE MULT(A,B,C,IA,JA,IB)

. CALCULATE THE PRODUCT C=A*B

IMPLICIT REAL*8(A-H,0-Z)

. REMOVE ABOVE CARD FOR SINGLE PRECISION OPERATION

DIMENSION A(IA,JA), B(JA,JB), C(IA,IB)

DO 5 I=1, IA
DO 10 J=1, JB
€(1,3)=0.0D0
DO 15 K=1, JA
(I, D=C(T,D+A(T,K)*B(K, )
CONTINUE
CONTINUE
CONTINUE
RETURN
END




[aEaNe]
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SUBROUTINE MOVE(CA,B,N)
. PROGRAM TO MOVE N ELEMENTS OF ARRAY B INTO ARRAY A
IMPLICIT REAL*8(A-H,0-2)
. REMOVE ABOVE CARD FOR SINGLE-PRECISION OPERATION
DIMENSION A(1),B(1)
DO 10 I=1,N
10 ACI)=B(I)

RETURN
END




¢ ‘ DOUBLE PRECISION FUNCTION DOT(A,B,N)
g. ... PROGRAM TO PERFORM THE DOT PRODUCT OF TWO VEC"I"ORS
‘ IMPLICIT REAL*8(A-H,0-Z)
® g .. REMOVE ABOVE CARD FOR SINGLE-PRECISION OPERATION
‘ DIMENSION A(1),B(1)
‘ DOT=0.D0
DO 10 I=1,N
¢ 10 DOT=DOT+A(I)*B(I)
‘ RETURN

END
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SUBROUTINE CLEAR(A,M)
. PROGRAM TO CLEAR A FLOATING POINT ARRAY
IMPLICIT REAL*8(A-H,0-Z)
. REMOVE ABOVE CARD FOR SINGLE-PRECISION OPERATION
DIMENSION A(1)
DO 10 I=1,M
10 A(I1)=0.D0

RETURN
END




SUBROUTINE ICLEARCIA,M)
. PROGRAM TO CLEAR AN INTERGER ARRAY

aNaKal

DIMENSION IA(1)
® DO 10 I=1,M
10 IA(I)=0

RETURN
END




